Computer Systems CEN591(502)
Fall 2012

Sandeep K. S. Gupta
Arizona State University
Agenda

- Introductions
- Syllabus
- Survey
- Class registration issues
Computer System?

- Underlying principles for hardware, software, and networking:
 - Computer Architecture + Compiler + OS + Application

The necessary background for graduate students to pursue advanced study in the areas of computer engineering.
Course goals and topics

- To understand fundamentals of computer systems
 - Introduction
 - Technology trends in computer systems
 - Primers on computer architecture
 - Primers on computer system design
 - Fundamentals of quantitative design and analysis of computer systems
 - Computer architecture
 - Memory hierarchy
 - Memory protection and virtual machine memory protection
 - Instruction-Level Parallelism
 - Data level parallelism
 - GPU architecture
 - Thread-level parallelism and multi-core processors performance
 - Machine level representation of programs and data
 - Representing and manipulating information
 - Machine level representation of programs
Course goals and topics—cont’d

- To understand fundamentals of computer systems
 - Operating system
 - Processes and Interrupt handling
 - Process synchronization
 - Virtual memory
 - System I/O
 - System software
 - Compilers
 - Linkers, and loaders
 - Networking:
 - MAC layer, TCP/IP, network programming
 - Emerging computing paradigms:
 - Warehouse-scale computers, data centers
 - Cloud computing
- To learn the efficient way of programming
 - Data types, Security in coding, Computer Arithmetic
 - Memory and I/O Matters
 - Codes performance
COURSE MECHANICS and policies
Reference books

- Computer Systems: A Programmer's Perspective 2ed, Randal E. Bryant and David R. O'Hallaron
- Computer Architecture: A quantitative approach, John L. Hennessy and David A Patterson.
- Operating Systems Concepts, Silberschatz et al.
- Compilers, Principles, Techniques, and Tools, Aho et al.
- Fundamentals of Mobile and Pervasive Computing, Adelstein et al.
Course Mechanics

- Homework and Programming Assignments (one every two to three weeks): 20%
- Reading assignments and Quizzes (every week): 10%
- Midterm and Final Exam: 70%
 - Two midterms (tentative dates): W Oct 10th and W Nov 7th.
 - Final exam: F Dec 14th 9:50 to 11:40am.
A Note about “RAQ” Hazard

- RAQ = “Read After Quiz”
- Quizzes can be unannounced
- Meant to make sure you are in SYNC with the class
- Reduce some pressure from Exam preparation
- Read the material (book, slides, paper etc.) before coming to class and/or view assigned pre-recorded lecture.
“No Distraction” Policy

- No Laptops/Netbooks/Cell Phone/News Papers etc.

- Laptops/Netbooks may be permitted – only with instructor’s permission
 - Only for note-taking purpose (all other activities disallowed unless instructed).
Cheating/Plagiarism Policy

- Strictly prohibited
- See University policy
- Minimum punishment – zero in the assignment
Class Format

- Quiz (10 min)
- Quiz review + Recap (5 min)
- Lecture (45 to 55 (when no Q) min)
 - (If used) Slides will be posted after the class
- Discussion (10)
 - Take Notes!
- Assignment Qs/Next Class (5 min)
 - Take Notes!
Class Cyberpresence

 - slides
- Blackboard
 - Class assignments
 - Solutions
 - Discussion board
 - Reference material
- Visit regularly for latest information
What can you expect from this course?

- Lots of in-class interaction
- Interesting and challenging assignments and exam questions
- Help/Tutorials by instructor/TA on difficult material
- And lot more!
Contacting Me or TA

Instructor
- Email: sandeep.gupta@asu.edu
 - Subject line: CEN591Fa11
- Office: BY 522
- Phone: 5-3806
- Office Hours: MW 3-4:30 pm
- Call me | | come to my office hrs | | Set up an appointment
- http://impact.asu.edu

TA: Zahra Abbasi
- Email: zahra.abbasi@asu.edu
- Office BY517
- Office Hours: MTTh 11-12 or by appointment
What do I do when I am not teaching?
IMPACT: Research

Use-inspired research in pervasive computing & wireless sensor networking

<table>
<thead>
<tr>
<th>ID Assurance</th>
<th>Mobile Ad-hoc Networks</th>
<th>Pervasive Health Monitoring</th>
<th>Criticality Aware-Systems</th>
<th>Thermal Management for Data Centers</th>
<th>Intelligent Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal: Protect people’s identity & consumer computing from viral threats</td>
<td>Goal: Protocols for mobile ad-hoc networks</td>
<td>Goal: Pervasive Health monitoring</td>
<td>Goal: Evaluation of crisis response management</td>
<td>Goal: Increasing computing capacity for datacenters</td>
<td>Goal: Container Monitoring for Homeland Security</td>
</tr>
<tr>
<td>Features: • PKI based • Non-tamperable, non-programmable personal authenticator • Hardware and VM based trust management</td>
<td>Features: • Energy efficiency • Increased lifetime • Data aggregation • Localization • Caching • Multicasting</td>
<td>Features: • Secure, Dependable and Reliable data collection, storage and communication</td>
<td>Features: • Theoretical model • Performance evaluation • Access control for crisis management</td>
<td>Features: • Online thermal evaluation • Thermal Aware Scheduling</td>
<td>Features: • Integration of RFID and environmental sensors • Energy management • Communication security</td>
</tr>
<tr>
<td>Sponsor: [ID Assurance Logo]</td>
<td>Sponsor: [MediServe Logo]</td>
<td>Sponsor: [MediServe Logo]</td>
<td>Sponsor: [MediServe Logo]</td>
<td>Sponsor: [Intel Logo]</td>
<td>Sponsor: [Intel Logo]</td>
</tr>
</tbody>
</table>

Medical Devices, Mobile Pervasive Embedded Sensor Networks

What’s Next?

- Next Class: Technology trends in computer systems
 - Computer Architecture: A quantitative approach, John L. Hennessy and David A Patterson, 5th ed. Ch 1, Sec 1-6

- Plan for next few lectures: Intro to Computer Arch., primers on computer system and organization, and quantitative analysis of computer systems
 - Computer Architecture: A quantitative approach, John L. Hennessy and David A Patterson, 5th ed. Ch 1, Sec 3
 - Computer Systems: A Programmer's Perspective 2ed, Randal E. Bryant and David R. O'Hallaron, 2nd ed, Ch 3, Sec 1