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Abstract—An On-Off keying based minimum-energy coding
scheme with coherent receiver has been shown to provide better
performance than BPSK. This paper presents a closed-form
expression of the BER performance of that scheme over an
AWGN channel with either a coherent receiver or a noncoherent
receiver. In this paper, a more conservative result is obtained
due to a better characterization of the average energy per
source bit. Our results show that the performance is better than
BPSK only when the codeword length is greater than 63. It
is shown that hard-decision decoding outperforms BPSK only
when the SNR is higher than a certain threshold and that
soft-decision decoding outperforms BPSK regardless of the SNR
value. Recommendations for practical codeword lengths are also
provided.

I. INTRODUCTION

Many energy constrained applications demand an energy-
efficient design to minimize power consumption and to extend
operation lifetime. Having the underlying transmission and
communication mechanism energy-efficient is critical to im-
prove the needed efficiency. Especially given the energy used
to transmit a single bit equals the energy needed to perform a
thousand 32-bit calculations [1].
In previous work [2], we proposed a Minimum Energy

coding (ME-coding) based on On-Off Keying (OOK) . The
basic idea is to map source symbols into codewords with fewer
high bits, hence transmitting as few high bits as possible in
order to save transmission energy. For energy-constrained and
low data rate applications, such as medical monitoring and
prosthesis [3], we can afford to sacrifice bandwidth efficiency
to achieve energy efficiency as the total data rate is in the
order of a few kilobytes per second. Further, the fact that ME-
coding uses OOK, which is characterized by the simplicity of
the circuitry, makes it an excellent solution for system minia-
turization. In this work, we derive closed-form expressions
of ME-coding over Additive White Gaussian Noise (AWGN)
channels. For simplicity purposes, a coherent receiver is rarely
used in conjunction with OOK due to the complex signal
and local carrier. Hence, we extend previous work [2] by
incorporating noncoherent decoding in the analysis. Further,
we realized that [2] miscalculated the average energy per bit
which led to overoptimistic results. We address the problem
herein.
We compare the performance of ME-coding mainly with

Binary Phase Shift Keying (BPSK) because the simplicity
and energy efficiency of BPSK [4] are preferred for low data
rate and energy constrained applications. Our analysis and
simulation show that although the performance of ME-coding
is not as good as the previous work [2] claims, ME-coding still
outperforms BPSK when its codeword length is greater than
63 and the Signal-to-Noise Ratio (SNR) is relatively high. We
also show that hard-decision decoding outperforms BPSK only
when the SNR is higher than a certain threshold and that soft-
decision decoding outperforms BPSK regardless of the SNR
value. We discuss the complexity of ME-coding and suggest
that a practical codeword length should be in the range from
63 to 1023, according to the performance requirement of the
clock recovery circuit of the receiver.
The rest of the paper is organized as follows. In Section

II we review related work on minimum energy coding and
the preliminaries used in our analysis. Performance analysis
and comparison of hard-decision decoding and soft-decision
decoding are developed in Sections III and IV, respectively.
We discuss the complexity and the feasible range of codeword
length and conclude in Section V.

II. PRELIMINARIES
A. Related Work
Wang et al. [4] showed BPSK is a preferred energy effi-

cient scheme for low-data rate applications. A simple digital
modulation technique such as OOK is totally ignored due to its
low error performance. ME-coding was originally proposed by
Erin and Asada [5]. In an effort to take advantage of OOK’s
feature (i.e., having to transmit only high bits), they map the
source data bits into codewords which have fewer high bits
in them and codewords with fewer high bits are assigned to
messages with higher probabilities.
In [2], a new ME-coding scheme is proposed. As shown

in Fig. 1, the basic idea involves mapping every k bits of a
source bitstream into an n-bit (n = 2k − 1) codeword. The
all-zeros source symbol S0 is mapped into a n-bit all-zeros
codewordM0. All other source symbols Si are mapped into n-
bit codewordsMi with only one high bit (namely, the ith bit in
the codeword) to reduce the transmission energy consumption.
It seems the average energy consumed by ME-coding to
transmit ME codeword is 1

n of BPSK. However, previous



 k  n

n+1
mapping

S0 00..00
S1 00..01
.... ....

.... ....

Sn-1 11..10
Sn 11..11

M0 0000..000
M1 0000..001
.... ....

.... ....

Mn-1 0100..000
Mn 1000..000

n=2k-1

Fig. 1. ME encode, transmission and decode.

work [2] failed to consider that with an n-bit codeword, BPSK
can transmit n bits of source data, whereas ME-coding can
transmit k bits of source data. Therefore, the average energy
consumed per source bit of ME-coding is 1

k of BPSK as
opposed to 1

n .

B. Coherent Receiver vs. Noncoherent Receiver
On an AWGN channel, for an ideal coherent receiver, when

1 or 0 is transmitted, the distributions of the output signal r
of the detector are

p1(r) =
1√
2πσ

exp

µ−(r −A)2

2σ2

¶
(1a)

and p0(r) =
1√
2πσ

exp

µ−r2
2σ2

¶
, (1b)

respectively, where A is the amplitude of modulated signal
and σ is the standard deviation of additive white noise. For a
noncoherent receiver, the distributions of the output signal of
the detector are [6]

p1(r) =
r

σ2
exp

µ
−r

2 +A2

2σ2

¶
I0

µ
Ar

σ2

¶
(2a)

and p0(r) =
r

σ2
exp

µ−r2
2σ2

¶
, (2b)

respectively, where I0(·) is the zero-order modified Bessel
function of the first kind. Denote PeS and PeM as the error
probability of a high bit being received as a low bit and a
low bit being received as a high bit, respectively, then for a
coherent receiver we have [7]

PeS = PeM =
1

2
erfc(

p
Eb/4N0), (3)

where Eb
N0

is the energy-to-noise spectral density ratio and
erfc(·) is the complementary error function. For a noncoherent
receiver we have [6]

PeM = 1−Q

µp
2Eb/N0,

b

σ

¶
and PeS = exp

µ
− b2

2σ2

¶
,

(4a)
where b is the decision threshold defined [6] as

b = σ
p
2 +Eb/2N0, (5)

and Q(·) is the Marcum-Q function. Then we can calculate
the theoretical BER of OOK for both a coherent receiver and
a noncoherent receiver as

Pe =
1

2
[PeS + PeM ]. (6)

C. Number of erroneous bits and illegal codewords
When an ME codeword Mi is wrongly received as Mj and

decoded as source symbol Sj , not all k bits differ from the
original source bits. For example, when k = 3, source symbol
(0 1 1) is mapped into ME codeword (0 0 0 0 1 0 0), and
wrongly received as ME codeword (1 0 0 0 0 0 0). Then the
decoded symbol at the receiver is (1 1 1); there is only one
bit error when compared against (0 1 1). The actual number
of bit errors is the Hamming distance between symbol Si and
symbol Sj , denoted as dij . It is easy to getXn

j=0
dij = k · 2k−1, (7)

which will be used later in derivations of a closed-form
expression. If we receive an illegal codeword, a codeword with
more than one high bit, we do not consider all the original
k bits in error. Instead, we can permanently decode it as a
source symbol, e.g., Sj . When receiving an illegal codeword,
the average bit error rate upon receiving the illegal codeword
is

Pmbe =
Xn

i=0
P {Si|illegal codeword} · dij

k
. (8)

Assuming the distribution of source symbols is uniform and
considering (7), we have

Pmbe =
1

n+ 1

Xn

i=0

dij
k
=
1

2
. (9)

So we can permanently decode an illegal codeword to some
fixed symbol, and the average bit error rate is 12 . Thus we can
improve the performance a little compared with classifying all
k bits as wrong bits (Pmbe = 1).

III. HARD-DECISION DECODING
The traditional way to receive and decode ME codeword

is hard-decision. There are two different situations, original
symbol is not all-zero and original symbol is all-zero.

A. Original symbol is not all-zero
When the original k-bit source symbol Si is not all-zero

(i 6= 0), the encoded ME codeword Mi can be received as
Mi, or received as another codeword Mj (original high bit
changes to low bit, and another low bit received as high bit), or
received as other illegal codewords. We summarize the related
pairwise receiving probability and bit error rate in Table I.
Then the average bit error rate when transmitting Si is

Pe{Si} = Pm0
di0
k
+
X

j 6=iPij
dij
k
+ PmbPmbe. (10)

B. Original symbol is all-zero
Similarly, when the original source symbol is composed of

only zeros, the symbol S0 is encoded as ME codeword M0.
We have the pairwise receiving probability and bit error rate
as in Table I. Then the average bit error rate when transmitting
S0 is

Pe{S0} = PeS(1− PeS)
n−1Xn

j=1

d0j
k
+ PmbPmbe. (11)
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(a) Coherent receiver.
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(b) Noncoherent receiver.

Fig. 2. Bit Error Rate vs. average energy-to-noise ratio with hard-decision decoding
TABLE I

PAIRWISE ERROR PROBABILITY OF HARD-DECISION DECODING.

Not all zero symbol
Mi Received &
Decoded as

Probability BER

M0 → S0 Pm0 = PeM(1− PeS)
n−1 di0

k

Mi → Si Pmc = (1− PeM) (1− PeS)
n−1 0

Mj → Sj , j ∈
[1 n], j 6= i, 0

Pij = PeMPeS(1− PeS)
n−2 dij

k

Illegal
codeword

Pmb = 1− Pm0 − Pmc −
j 6=i,0

Pij Pmbe

All zero symbol
M0 Received &
Decoded as

Probability BER

M0 → S0 Pm0 = (1− PeS)
n 0

Mj → Sj , j ∈
[1 n], j 6= i, 0

P0j = PeS(1− PeS)
n−1 d0j

k

Illegal
codeword

Pmb = 1− Pm0 −
j 6=0

P0j Pmbe

With (10), (11), and the assumption of uniform distribution
of source symbols, we have

Pe{all} = 1

n+ 1

hXn

i=1
Pe{Si}+ Pe{S0}

i
(12)

=
1

n+ 1
[
n+ 1

2
PeM +

n+ 3

2
PeS − PeMPeS

− P 2eS −
1

2
(n+ 1)](1− PeS)

n−2 +
1

2
.

C. Numerical and Simulation Results

Define Eb as the energy used to send one modulation
symbol and Eav as the average energy used to transmit a
source data bit [6]. For BPSK, Eav equals Eb, for OOK, Eav

equals Eb
2 . For ME-coding, one k-bit non-zero source symbol

is transmitted as one n-bit ME codeword which has only
one high bit; transmitting an all-zero source symbol does not
consume energy. The average energy consumed per source bit
is Eb

k
2k−1
2k
. For large values of k, we can simply approximate

it as Eb
k .

Fig. 2(a) show the average bit energy-to-noise ratio of
ME-coding compared against BPSK and coherent OOK with
various codeword lengths. It also shows the results of Monte
Carlo simulation for different k, which validates the curves
of the closed-form expressions. When k = 3, ME-coding has
performance similar to coherent OOK, but worse than BPSK.
For k = 6 and k = 10, ME-coding has worse performance in
low Eav

No
, but has better performance when Eav

No
is higher than

8dB (k = 6) or 6dB (k = 10). This indicates that for a large
codeword length, ME-coding still can either achieve energy
efficiency under the same BER or achieve better performance
under the same energy consumption.
Fig. 2(b) shows the performance of ME-coding with a

noncoherent receiver. Compared with Fig. 2(a), we observe the
performance of noncoherent ME-coding is slightly degraded
from coherent ME-coding of about 0.25dB. The benefit of
using noncoherent ME-coding is its simplicity which can
compensate for the small performance deterioration.

IV. SOFT-DECISION DECODING

Since ME-coding with hard-decision decoding does not
have any error recovery capability, the conception of soft-
decision decoding (code-by-code detection) was introduced
in [2] to improve the performance of ME-coding. Instead of bit
by bit sampling and comparison, the signal amplitudes of all
the n bits of the same codeword are compared with each other;
the bit with the highest strength is decoded as a "one" and the
rest are decoded as "zero". Fig. 3 illustrates the process of
soft-decision decoding: with hard-decision decoding, it would
have been detected as (0 1 1 1 0 0 1); if we look at the bit
with highest strength, the entire codeword is detected as (0 0
1 0 0 0 0). In this way we can form a legal codeword and
decode it, eliminating the occurrence of an invalid codeword
at the receiver.

A. Original symbol is not all-zero

Similar to the hard-decision decoding in Section III, when
the original k-bit source symbol is not equal to zero, we can



noise channel

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0.24

1.01

1.33

0.56

-0.34

0.17

0.59

Transmitted
codeword

Detected
codeword

Sampler
output

select largest
one as '1'

Fig. 3. Illustration of soft-decision decoding.

summarize the related pairwise probability and bit error rate
as in Table II.

TABLE II
PAIRWISE ERROR PROBABILITY OF SOFT-DECISION DECODING.

Not all zero symbol
Mi Received & Decoded as Probability BER
M0 → S0, Pm0 = PeM (1− PeS)

n−1 di0
k

Mi → Si, Pmc 0

Mj → Sj , j ∈ [1 n], j 6= i Pij
dij
k

All zero symbol
Mi Received & Decoded as Probability BER
M0 → S0, Pm0 = (1− PeS)

n 0
Mj → Sj , j ∈ [1 n] P0j

dj0
k

Pmc is defined as the probability of correctly receiving a
ME codeword, or the probability that the amplitude of the
original high bit is still larger than all the other n− 1 bits. So
the contaminated original high bit (denoted as y) has to be in
the range from b to ∞ to be judged as one, and all other bits
must be less than y. With (1a) and (1b) we have

Pmc=

Z ∞
b

·Z y

−∞

1√
2πσ

exp[
−r2
2σ2

]dr

¸n−1
1√
2πσ

exp[
−(y −A)2

2σ2
]dy. (13)

By (2a) and (2b) we have Pmc for the noncoherent receiver

Pmc =

Z ∞
b

·Z y

0

r

σ2
exp

µ
− r2

2σ2

¶
dr

¸n−1
y

σ2
exp

µ
−y

2 +A2

2σ2

¶
I0

µ
Ay

σ2

¶
dy. (14)

Pij is the probability codeword Mi is received as Mj , i.e.,
the probability that the original high bit becomes smaller than
the threshold and another low bit is detected as "high" because
the additive noise makes it the strongest one and larger than
the threshold (amplitude x ranges from the threshold b to ∞;
the other n− 2 bits and the original high bit are less than x).
For the coherent receiver, Pij is given by

Pij =

Z ∞
b

1√
2πσ

exp

µ−x2
2σ2

¶·Z x

−∞

1√
2πσ

exp[
−r2
2σ2

]dr

¸n−2
·Z x

−∞

1√
2πσ

exp

µ−(r −A)2

2σ2

¶
dr

¸
dx, (15)

and for the noncoherent receiver it is

Pij =

Z ∞
b

x

σ2
exp

µ
− x2

2σ2

¶·Z x

0

r

σ2
exp

µ
− r2

2σ2

¶
dr

¸n−2
·Z x

0

r

σ2
exp

µ
−r

2 +A2

2σ2

¶
I0

µ
Ar

σ2

¶
dr

¸
dx. (16)

We can numerically calculate Pmc and Pij . Then the average
bit error rate when transmitting Si is:

Pe{Si} = Pm0
di0
k
+
X

j 6=i,j 6=0Pij
dij
k
. (17)

B. Original symbol is all-zero
When the original source symbol is composed of only zeros,

the symbol S0 is mapped as ME codeword M0. We have the
pairwise probability and bit error rate as in Table II.
The probabilityM0 is received asMj occurs only when the

jth bit changes to a high bit above the threshold and all the
other n− 1 bits, so for the coherent receiver we have

P0j =

Z ∞
b

·Z y

−∞

1√
2πσ

exp[
−r2
2σ2

]dr

¸n−1
1√
2πσ

exp[
−y2
2σ2

]dy.

(18)
For the noncoherent receiver we have

P0j =

Z ∞
b

·Z y

0

r

σ2
exp

µ
− r2

2σ2

¶
dr

¸n−1
y

σ2
exp

µ
− y2

2σ2

¶
dy.

(19)
Then the average bit error rate when transmitting S0 is:

Pe{S0} =
Xn

j=1
P0j · dj0

k
. (20)

From (17) and (20), we can get the total bit error rate for
soft-decision decoding as

Pe{all} = 1

2
Pm0 +

n

2
Pij +

1

2
P0j . (21)

C. Numerical and Simulation Results
In Fig. 4(a), the theoretical value and Monte Carlo sim-

ulation results are illustrated. ME-coding with soft-decision
decoding has consistently better performance than coherent
BPSK when k = 6. When BER is 10−7 and k is 6, coherent
ME-coding shows a 1.7dB gain over BPSK, which means
an energy savings of about 32.5% (10log( 1

0.675) ≈ 1.7dB).
Again, Fig. 4(b) shows that with soft-decision decoding the
performance of the noncoherent receiver is slightly worse than
the coherent receiver. But a gain of 1.4dB at BER 10−7 can
still guarantee an energy saving about 27.6% (10log( 1

0.724) ≈
1.4dB).
Comparing Fig. 4(a) with Fig. 2(a), we observe the perfor-

mance of soft-decision decoding improves about 0.9dB over
hard-decision decoding when BER = 10−7.

V. DISCUSSION AND CONCLUSION
A. Complexity vs performance
Clearly, coherent soft-decision decoding has the best result

but it needs to hold all n amplitude values and compare them,
which will increase the circuit complexity and die area of
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Fig. 4. Bit Error Rate vs. average energy-to-noise ratio with soft-decision decoding

the receiver. Whereas noncoherent hard-decision decoding has
the lowest performance and simplest design. Hard-decision
decoding does not have the consistent performance of soft-
decision decoding, thus it can be used in a relatively stable
channel, where signal noise ratio generally remains at a high
level. Soft-decision decoding can be used in a relatively
protean channel, where signal noise ratio fluctuates in a large
range, and the performance consistently outperforms that of
BPSK at most times. We draw approximate comparisons of
the four schemes in Fig. 5 in terms of performance and
complexity. We should recognize, as k increases, the resulting
complexity and performance of soft-decision decoding will
increase. At a certain point, the increased complexity and
the increased circuit power consumption of noncoherent soft-
decision decoding may exceed that of coherent hard-decision
decoding. Exactly when this would happen depends on the
detailed implementation of the circuit and the value of k.

B. Codeword Length
ME-coding will increase the bandwidth requirement by n

k
times compared with BPSK. For energy-constrained low data
rate applications, we can safely sacrifice bandwidth efficiency
to obtain energy efficiency. For example, k = 6 indicates a ME
codeword length of 63. Considering several all-zero symbols
may be transmitted consecutively, then the possible length
of a long string of zeros may be several multiples of 63. A
large k value may require a high performance synchronization
design which will complicate the design of the receiver. For
instance, the T1/E1 line interface chip LXT336 [8] is capable
of detecting 175 continuous zeros before it sends out a Loss of
Signal error. A high-speed SDH chip [9] may tolerate as many
as 2000 consecutive zeros. Since we can obtain performance
and energy efficiency only if k > 6, we suggest a reasonable
and practical range for k is from 6 to 10 (n from 63 to 1023).
A longer codeword length is possible, but will require higher
capability of the clock recovery.

C. Conclusion
Compared with coherent BPSK, ME-coding with a large

codeword length can achieve either performance improvement
or energy efficiency. Its energy efficiency and circuit simplicity

Code detection
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Code detection
noncohrent

Complexity

Performance (BER)

Noncoherent
Soft decision

Coherent
Soft decision

Noncohrent
Hard decision

Coherent
Hard decision complexity increases

as k increases

Fig. 5. Performance vs. Complexity

make ME-coding an excellent option for energy constrained,
resource limited wireless sensor applications. Our result also
shows hard-decision decoding can be used only under rela-
tively large SNR, and soft-decision decoding does not have this
constraint. Regarding complexity and performance, choices
need be made carefully to choose between hard-decision
or soft-decision decoding, coherent receiver or noncoherent
receiver.
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