Criticality Aware Access Control Model for Pervasive Applications *

S. K. S. Gupta,

T. Mukherjee

and K. Venkatasubramanian

Dept. of Computer Science and Engineering
Arizona State University
Tempe, AZ 85287
(sandeep.gupta) @asu.edu

Abstract

In this paper we present a new framework for spec-
ifying access control policies in smart spaces called
Criticality-Aware Access Control (CAAC). The main
idea is to automatically respond to occurrences of crit-
ical events within the smart space and change the ac-
cess control policies accordingly. Current solutions
like Context Aware-Role Based Access Control(CA-
RBAC) are not designed to take critical events into ac-
count. CAAC extends the CA-RBAC model by includ-
ing a new parameter called Criticality which measures
the urgency of tackling the effects of a critical event.

We further identify five basic requirements for han-
dling critical events: Responsiveness, Correctness,
Non-interference, Liveness and Non-repudiability.
Based on the CAAC framework, we define a sample set
of access control policies and validate them to show
that they meet the aforementioned requirements.

1 Introduction

An important aspect of Ubiquitous Computing is to
develop intelligent environments which allow inhabi-
tants to interact seamlessly with a smart, information-
rich space. An example of a smart space can be a
’smart hospital emergency department (ED)’, where
patients are automatically and continuously moni-
tored, and any emergency is immediately reported
to medical professionals. The development of smart
spaces raises many security issues. The ability of such
spaces to monitor and interact with its internal ele-
ments, makes them ideal candidates for hackers and
tech-criminals to exploit. Access control is there-
fore an essential component of smart spaces to pre-

*Supported in part by MediServe Information Systems, Con-
sortium for Embedded Systems and National Science Foundation

vent unauthorized access to the information available
in them.

Any system, including smart spaces, is in one of
at least two states: normal or abnormal. In a normal
state, the system provides services in response to rou-
tine events. A smart-ED, responding to the arrival of
new critical patients, may automatically allocate ap-
propriate resources, such as available beds, contact
emergency personnel, display the location of neces-
sary equipment, and so on. Access control in such
normal states can follow standard pre-defined policies,
such as Role-Based Access Control [3]. These mod-
els can be effective in providing access control during
such normal system states.

However, when the system is in an abnormal state,
its service requirements may change radically. Rou-
tine services provided by the system may not meet the
demands of the new conditions. Allocating resources
when a natural disaster brings an influx of a large num-
ber of patients to the smart-ED is a far more demand-
ing task. Standard access control policies may pre-
vent medical personnel from using the resources they
need to respond to the emergency. For example, nurses
brought in from neighboring hospitals in response to
a disaster may not automatically be granted access to
equipment in the smart-ED.

A smart space needs to be able to observe its en-
vironment continually and to take corrective measures
in case of environmental changes which can cause the
system to enter an abnormal state. We call such en-
vironmental changes Critical Events. Once a critical
event has been detected, the system should take im-
mediate (as soon as the criticality is observed) action
to control its effects. In the case of fire, the smart-ED
may not only notify the fire-department, but also per-
form other essential functions, such as prioritize the

evacuation of patients and associated equipment. Crit-
ical events have a finite period during which corrective
action must be taken. For example during a fire in the
smart-ED, patients need to be evacuated ASAP. The
system response to critical events should not interfere
with the normal working of the system. In the case of
a large patient influx due to a disaster, the treatment
of patients already in the ED should not suffer. Fur-
ther, any system changes in response to a critical event
should be temporary. Any access control policies mod-
ified in smart-ED during an emergency should be re-
stored once the emergency is over.

One of the first efforts in providing access control
in a smart space was the Role Based Access Control
model introduced in [3]. In RBAC, subjects in the
system are assigned roles when they join the system,
and are allowed to access resources, within the sys-
tem, based on the privileges associated with the roles.
Given a set of roles and privileges RBAC involves two
main activities: mapping subjects to roles and map-
ping the roles to different sets of privileges. In tradi-
tional RBAC, the two mappings are static and do not
reflect dynamic changes within the system.

Context-aware Role Based Access Control (CA-
RBAC) [5] was designed to make RBAC dynamic by
including context information while associating sub-
jects to roles and roles to privileges. To provide
these context aware mappings, traditional CA-RBAC
include context information (like space, time, resource
capability, subject capability etc.) while making ac-
cess control decisions. However, in CA-RBAC context
information is gathered only as a response to explicit
access requests within the system. This model does not
react to the occurrence of critical events, which, as we
have seen, have unique access control requirements.

To meet the demands of critical events produced
from abnormal system states, a new access control
model for smart spaces is needed. This model should
not only prevent unauthorized access within the space,
but also provide facilities for responding to the effects
of critical events. The goal of this paper is therefore
to develop a generic framework for specifying access
control policies that perform the dual task of control-
ling access to resources during both critical and non-
critical events within the smart space.

1.1 Contribution and Organization of the Paper

Our contribution is the development of a new ac-
cess control model for smart spaces which extends the

traditional CA-RBAC model to take into account the
effects of critical events. We call this new model Crit-
icality Aware Access Control (CAAC). We introduce a
new term, Criticality, that defines the level of urgency
required for various mitigative actions during a criti-
cal event'. CAAC classifies system context informa-
tion into two main categories: critical and non-critical.
Critical contexts indicate the setting or occurrence of
a critical event which requires immediate action. Non-
critical contexts, on the other hand, are observed dur-
ing normal system states and require no special action
(In the sequel, we use the terms critical event, and criti-
cal context interchangeably). CAAC provides the abil-
ity to automatically adjust access control policies in
response to critical events. This may include notifi-
cation, logging, access control relaxations/restriction,
and more depending on application requirements. We
have identified five properties which a CAAC model
needs to satisfy:

1. Responsiveness: The system should immediately
respond to any critical event.

2. Correctness: A change in policies should only be
in response to a critical event.

3. Non-Interference: Policy changes due to criti-
cal events should not affect the normal working of the
system.

4. Liveness: The duration of policy changes should
be finite and last only as long as needed.

5. Non-Repudiability: All system activity should be
non-repudiable.

The rest of the paper is organized as follows: Sec-
tion 2 presents the preliminaries which describes the
requirement for CAAC. Section 3 describes the no-
tion of criticality and presents the CAAC architectural
framework. In Section 4 we illustrate an example sce-
nario of CAAC. Section 5 presents sample access con-
trol policies for CAAC followed by their validation in
Section 6. In Sections 7, 8, and 9, we discuss various
implementation specific issues of CAAC, related work
and conclusions respectively.

2 Preliminaries

A CAAC model has greater requirements than tradi-
tional CA-RBAC access control, because of their ex-

't is important to note, that this is a new framework for ac-
cess control management which provides facilities for planning
responses to critical events. It does not model the critical events
themselves

plicit handling of critical events. Below we present
some of the functional requirements of CAAC in detail
which will provide a better understanding of the func-
tions of the various components of our framework.

2.1 Role Management

The main functions of role management include:
assigning proper roles to subjects and providing them
with appropriate privileges based on their roles. More-
over, subject-to-role, role-to-role, and role-to-privilege
constraints affect the subject-to-privilege mapping.
Our architecture recognizes two basic types of roles:
System Roles and Space Roles, similar to the model
in [9]. The former is assigned to a subject when it
becomes a part of the system, and is usually mapped
based on the actual position held by the subject in the
system, doctor in a hospital, for example. The latter
however, is assigned to a subject based on the space
it is currently inhabiting, like nurse in a hospital ED.
A subject can have multiple space-roles, i.e. differ-
ent roles in different spaces. The privileges are, how-
ever, only pertinent to the resources within the space
the subject is inhabiting. It should be noted that for
a subject, the system role is usually a subset of the
space role. Hereafter, all references to access control
are with respect to a smart space.

2.2 Context Management

The access control decisions made by a system have
to reflect the changes that occur within the system.
Context information makes it possible for the system
to keep track of these changes. Context information
can be roughly grouped into three categories: subject
context (e.g.: location of the subject, subject’s capabil-
ity), resource context (e.g.: capability of the resource,
current load on the resource) and environmental con-
text (e.g.: number of subjects in a space at a given
time). Access control models have to take all the afore-
mentioned types of contexts into account when making
access control decisions.

2.3 Critical Event Management

The effects of critical events, generated within a
system, need real-time guarantees for alleviation and
can not be generalized by generic context manage-
ment. This is because critical events differ from other
more mundane ones. Some of the principle differ-
ences are: 1) critical events require automatic change

] CAAP duration

v

Ttart

Time TEOC w 0

CASE 1: Criticality is controlled before
Window of Opportunity

v

T\l:\l t . \U o
Time

CASE 2: Window of Opportunity ~ expires.
Criticality may or may not have been controlled

|

Totar Time Tey W,

»

CASE 3: All actions for a critical event have been taken before Window of Opportunity
Criticality may or may not have been controlled.

Figure 1. Scenarios showing the required du-
ration of CAAP mode

in access policies, unlike normal system state where
contexts are evaluated on request, 2) all policy change
with respect to critical events are temporary. However
this is not a stringent requirement during non-critical
contexts, 3) in critical contexts non-repudiability must
be ensured.

3 Criticality

In order to be able to effectively model the automa-
tion of access control during critical events, we define
a term called criticality. Criticality is a measure of
the level of responsiveness in taking corrective actions
to control the effects of a critical event and is used
to determine the severity of critical events. To quan-
tify this attribute, we introduce the term Window-of-
Opportunity (W,), which is an application dependent
parameter defining the maximum delay that can possi-
bly be allowed to take corrective action after the occur-
rence of a critical event. Therefore, lower the Window-
of-Opportunity of a critical event the higher its criti-
cality. A Window-of-Opportunity = 0 indicates max-
imum criticality for a critical event while a Window-
of-Opportunity = oo indicates no criticality.

When a critical event occurs, the system is required
to provide necessary facilities to take corrective ac-
tions against the critical event. The value of W, deter-

mined by the system for the critical event, specifies the
time before which corrective actions need to be taken.
Access policies implemented by the system, in its nor-
mal state, may not be able provide the necessary facili-
ties to take corrective actions, against the critical event,
within the required time duration (W,). Therefore, it
may be necessary for the system to implement a new
set of access policies which facilitate timely action.

We refer to this new set of access policies as
Criticality-Aware Access Policies (CAAP) and during
their execution, the system is said to be in CAAP-
mode. Asthe CAAP aids in handling the critical events
in the system, the duration of CAAP-mode is bounded
by W,. However, if the critical event is controlled
before W,, the system should be removed from the
CAAP-mode.

However, changing access policies, during critical
events, may introduce security concerns. These stem
from the fact that the new set of policies may pro-
vide higher privileges to access resources. If the sys-
tem takes the extreme view of not changing the poli-
cies at all, then it may not be possible to control the
critical event. If on the other hand the access poli-
cies are in the CAAP-mode for long periods of time,
it may prompt misuse of the privileges. We therefore
suggest the following criterion for managing the dura-
tion of the CAAP mode: 1) the window of opportunity
(W,), 2) the time instant when criticality is controlled
(Troc), and 3) the time instant when all necessary ac-
tions to mitigate the criticality, have been taken (I'gy).

The rationale behind limiting CAAP-mode to Troc
stems from the fact that, once the critical event has
been controlled, the system can return to its normal
state of functioning where the CAAP is not required.
Further, as the CAAP affect access to resources, once
all the corrective actions have been taken, continual
provision of CAAP is unnecessary irrespective of the
outcome. Therefore, the maximum duration for which
the system can be in the CAAP-mode, T 44p, is given
by: TCAAP = min(Wo,TEU,TEoc).

Figure 1 shows the three scenarios and the length of
the required CAAP-mode. In CASE 1, the criticality
has been controlled before the W, at time Troc lim-
iting the T 4p to this time. In CASE 2, the W, ex-
pires, thereby removing the system from CAAP-mode.
Finally in CASE 3, all the actions required to contain
a critical event have been tried, therefore the system
is removed from the CAAP-mode (irrespective of the
state of the critical event). Before moving on to the

Determine criticality level (using

contexts)

Is criticality level =
0?OR Has W, expired
OR last action not yet

taken ?

Is system in
CAAP-mode ?

@ Reset access policies for normal
system state
@ Reset system to normal state

@ Change current access policies
to CAAP.
@ Change system to CAAP-mode.

A

If access
request made ?

Implement the privileges of the
current access policies

Figure 2. Flow-chart for Criticality Handling in
CAAC

architectural framework of CAAC, we present a flow-
chart (Figure 2) which shows the control flow of han-
dling criticality in CAAC. The system continually de-
termines the criticality level and on observing a critical
event changes the access policies to CAAP and enters
the CAAP-mode. If there is no criticality, then the sys-
tem checks if the it is in CAAP-mode, if so, it returns
the system to its normal state and enforces the appro-
priate policies when access is requested.

3.1 CAAC Framework

In this section, we present the CAAC framework
that incorporates criticality awareness in a generic CA-
RBAC model. Figure 3 shows the various components
of the CAAC framework, which we define in more de-
tail, below.

Roles, Privileges and Subjects: These components
store information on the subjects in the system, the
types of roles they are assigned to and the privileges
assigned for each role.

Access Control Meta-data: This component ab-
stracts the information from the previous three com-
ponents and describes the dependencies between them.
Example, in a hospital system a subject S1 (John Doe)

Access Control Policy Management

Accountability
Management Unit

Role Management Unit

Criticality Management Unit

Dynamic Context

Access Control ~ Meta-Data Management Unit

Context Gathering

Roles Subjects Platform

Privileges

Figure 3. CAAC Framework

with a role R1(nurse) cannot be assigned a role R2
(doctor). In the literature these dependencies have also
been called as constraints.

Context Gathering Platform: This is the compo-
nent which collects raw context data from the system.
This information is highly system/application depen-
dent and belong to the subjects, resources and envi-
ronment of the system.

Dynamic Context Management Unit: This compo-
nent provides context management functions. It takes
the raw context data, processes it and obtains a higher
level context from it.

Role Management Unit: This component imple-
ments the role management functions for the system.
It takes input from the access control meta-data and
contextual information (both critical and non-critical)
to dynamically enforce the privileges to subjects.

Accountability Management Unit: This is used to
log all the system activity with respect to access con-
trol and is used for process improvement and account-
ability.

Access Control Policy Management: This is the
highest component of the system and uses the underly-
ing infrastructure to implement the access control and
administrative policies for the system.

Criticality Management Unit. Given this overview
of CAAC, we present a detailed description of the Critz-
icality Management Unit which handles criticality of
the system. Figure 4 shows its internal details

Context Interpreter: This is the component which
monitors all the contextual information emanating
from the system and intelligently detects the occur-
rence of a critical event.

Criticality Level Determination: Based on the in-
put from the Context Interpreter, this component de-
termines the level of criticality for an event. It also

Criticality Notification

Unit

Non-critical
context

Criticality Level handler

Determination Unit
Access Control

Meta-data
provider

Context Interpreter

Figure 4. Criticality Management Unit

determines the maximum time (W,) for which CAAP
has to be enforced within the system.

Criticality Notification Unit: This component
moves the system into CAAP-mode and informs
other components about the associated access policy
changes.

Access Control Meta-data Provider: This compo-
nent is used to provide access control meta-data to the
Criticality Notification Unit for determining the poli-
cies for the CAAP-mode.

Non-Critical Context Handler : This component is
used for querying specific contextual information dur-
ing normal system operation. In the event of any ac-
cess request, this component is used as an interface to
the Context Interpreter for obtaining the latest context
information.

4 Example of Criticality Based Access Con-
trol

To understand CAAC better we present an exam-
ple scenario for smart hospital emergency department
(ED). Within this hospital system, each medical pro-
fessional(MP) is assigned a system-role, based on their
functions in the hospital (doctor, nurse, cardiologist).
Each medical professionals is also assigned a space-
role based on which area of the hospital they work
in, doctors in the smart-ED get have roles like ED-
surgeon and so on. This space role is usually gener-
ated based on the MP’s system-role and other contex-
tual information (time of entry into smart space). The
space-role of a MP decides what privileges they have
in accessing different resources in the smart-ED.

In our case, the space roles are generated based
on the number of beds in the smart space. If there
are N beds in the room, then the roles are < ED —
MP — Bedl >, < ED — MP — Bed2 >, ...,

Access Control List for the Defibrillator

Space Roles Resource Privileges
ED-MP-Bed1 Allow Role Promotion of
Nurse for Patient K
ED-MP-Bed2 Allow due to occurrence
B B of a cardiac arrest
. .
' '
ED-MP-BedD Allow
. .
— - - = =
ED-MP Disallow (—-L Nurse Patient K |

Figure 5. Role Promotion due to Criticality

< ED — MP — BedN > and < ED — MP >.
The first N space roles provides privileges which allow
the usage of the device on the patient in the appropri-
ate bed while the last role prohibits the device usage,
but can allow access the common devices in the space.
When a doctor or nurse enters our smart ED they get
the space role of < ED — M P >,until they request
access to a device pertaining to a patient in a particular
bed.

When the smart-ED observes a critical event it
varies its normal state access policies for managing
it. To illustrate this fact we consider a sample criti-
cal event where a patient suddenly experiences cardiac
arrest and her assigned MPs are not available.

If suppose patient3 experiences life-threatening
ventricular fibrillation or ventricular tachycardia, the
system will immediately, move to the CAAP-mode
and implement the following new policies: issue a
code — blue warning, notify and promote the role of
a medical professional who is in the vicinity of the pa-
tient, and is proficient in the necessary treatment to the
space role < ED — M P — Bed3 > (for the defibrilla-
tor), and computes the W, for the criticality based on
the patient’s state. A non-critical access policy would
not have provided the MP with required privileges for
accessing the defibrillator unless an explicit request
was made which would have wasted valuable time and
also proved distractive to the care providers.

The role of subject, for the defibrillator, is demoted
(normal mode of operation) once the patient’s health
has been brought under control Troc. The subject
role is also demoted at the time instant when all treat-
ment for the patient has been tried and failed Try, in
our case the medical professional has used the defib-

rillator at all three energy levels of 200,300 and 360
Joules and the patient’s condition has not improved
[1]. Figure 5 shows the role promotion in the defib-
rillator’s access control list (ACL) (which maintains
a record of roles and privileges). During this criti-
cal event management, the system maintains detailed
logs listing all role promotions and associated activi-
ties. These logs will be used for maintaining account-
ability within the system.

5 Access Control Model and Policies

In this section, we present sample access control
model and policies for CAAC framework. As men-
tioned before, when the system observes a critical
event, it starts implementing a new set of access poli-
cies called CAAP that facilitates in tackling the situ-
ation. Here, we assume that on observing a critical
event, the system assigns higher privileges to subjects
as a part of CAAP by promoting the space-role. We
begin with the access control model of our system, fol-
lowing which we delve into the policies themselves.

5.1 Model

The sample model presented here is based on the
work done in [9] and extends it to include critical-
ity. The system maintains an access control list (ACL)
for each resource in its domain. An ACL for a re-
source, lists all possible space-roles that can be as-
signed to subjects using it and their corresponding set
of access privileges (also called method). Each sub-
ject is granted privileges from the ACL corresponding
to its space-role. For providing higher privileges to
a subject (during criticality), the system simply pro-
motes the subject’s space-role to one with the required
privileges rather than change the privileges associated
with the subject’s original space role. This makes the
system easier to deploy, maintain and prevents erro-
neous modification of the privileges associated with
the space-role of a subject.

Access to resources in our system is provided in
two ways- reactively, on receiving an explicit request
from a subject and automatically, on the occurrence
of a critical event. In the case of reactive access, the
system requires the subject to present a credential for
justifying its request. As in [9], we rely on three types
of credentials- the role of subjects, ownership of re-
sources, executability of the method (corresponding to

the role) on a resource. However during automated ac-
cess, the system automatically provides elevated priv-
ileges to subjects without the need for presenting any
credentials. Given this access control model we now
present a semi-formal specification for it.

5.2 Policy Specification

Access control model is specified in terms of poli-
cies. These policies define the rules for manipulating
the ACLs to control the access to resources. In our
system, policies are of two types:

Access Control Policies - these define the rules for
controlling the access to different resources within the
system. All the decisions take into account the roles,
context and criticality for making the access control
decisions.

Administrative Policies - these define the rules for
system administration functions. It is used for adding
subjects to the system, assigning them roles, map-
ping between the roles and maintaining accountability
within the system.

5.2.1 Access Control Policies

In this section we specify the access control policies of
our system. Table 1 presents a list of symbols used in
our specification.

Table 1. Notations Table

Symbols Description
SysAdm system administration role.
Rgys set of System roles.
Rspace set of Space roles

(Rsys g Rspace)-
S set of resources in the system.
CONTEXT set of contexts in the system.
Tsys system role (15ys € Rsys).
Tspace space role (Tspace € Rspace)-

Each time a subject enters a space, it gets a
space-role which is generated from - the subject’s
system-role, and context information (subject,resource
and environmental).

currentrole(rsys, context):Reys X CONTEXT — Rspace

This currentrole function is derived from the one
given in [9] by including contextual information in the

system-role to space-role mapping. When a subject re-
quests for a resource within a smart space, the system
executes the Access Control Predicate to determine the
level of access to be provided for the resource. The
specification of this predicate is done in the guarded
command language [2].
Access Control Predicate: In this predicate (Al-
gorithm 1), when a subject u makes a request to
a resource s for a specific method m (thus mak-
ing request(u, s, m) true), it presents a set of cre-
dentials. The credentials are of following types:
typeof (u,rsys) which ensures that u has the system-
role 7y, and exports(s, m) which ensures that s pro-
vides the access privileges m. Given these credentials,
the predicate validates the access control by first com-
puting the subject’s space-role (using currentrole
function). It then uses the promoterole function to
decide if the role needs to be promoted. Role promo-
tion happens only if the request is made in the CAAP
mode. The access is provided only if m matches the
space-role returned by promoterole in the ACL of s2.

This predicate extends the access control predicate
in [9], to include promoterole function which handles
criticality by executing the CAAP.
Promote and Demote Role: The function
promoterole (Algorithm 2) is used to promote
the space-role of a subject with respect to a resource
in case of an access request for mitigating a critical
event. When invoked, this function checks the level
of criticality using the function Criticality. If access
is requested in a normal state (Criticality() = 0),
it simply returns rgpece. If a critical event has
occurred, it does the following: 1) computes the
window-of-opportunity of criticality using the func-
tion calculatetime which takes the level of criticality
as input, 2) implements CAAP, by computing the
promoted space-role 7pspace, based on the level
of criticality using calculaterole, and 3) updates
a Promoted Role Table (PRT) with the following
tuple <subject’s id u, promoted role Tpspace, Start
time of role-promotion currentTime(), stop time of
role-promotion W,>. The PRT or Promoted Role
Table is used to account for all subjects whose roles
have been promoted. The presence of such a table
allows for easy auditing and role accountability.

We also define another function called demoterole
(Algorithm 5) which demotes the space-role for

“The assumption here is that the privileges associated with a
higher role encompasses all the lower privileges.

Algorithm 1: ACCESS CONTROL PREDICATE: Predicate is used for providing access control on explicit
request from a subject (reactive)

request(u, s, m) A typeof(u,rsys) € C A (s € S) A exports(s, m)A
(promoterole(currentrole(rsys, context), u),m) € ACL; — true

Algorithm 2: PROMOTE ROLE: Promotes the role of a subject depending upon level of criticality

Function Name : promoterole
Attributes : u € Set of Subjects, Tspoce € Rspace
Return Value : Promoted Role

1: if (Criticality() != 0) then

2: W, = calculatetime(Criticality())

3 TpSpace = calculaterole(Criticality(),u) // Compute new space-role
4: PRT = PRT U {(u, Tpspace, currentTime(), W,)} // Update PRT

5. return TpSpace

6: else

7 1eturn T'space

8: end if

Algorithm 3: NOTIFICATION: Monitors the system for criticality, provide notification, issues orders for
role promotion and maintains promotion logs

Function Name: noti fyCritical

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

while (TRUE) do

while (Criticality() = 0) do
if (state = C AAP-mode) then
state = normal // Revert to the normal state, when criticality is over
demoterole(u)
end if
end while
if (state = CAAP-mode) then
if (timer W, expired) then
state = normal // Revert to the normal state, when window of opportunity expires
currentrole(rgys, context), for each resource
else
if (all actions taken) then
demoterole(u) // Revert to the normal state, when all actions have been taken
state = normal
end if
end if
end if
state = C AAP-mode // Criticality is observed, enter CAAP-mode
CL = Criticality()
W, = calculatetime(CL)
if (notify(findUser(),CL,W,)) then
start_timer(W,)
promoterole(curTentTole(Tsys, context), u), for each resource
end if

26: end while

Algorithm 4: ACCOUNTABILITY: Returns the current and promoted role of a subject

Function Name : roleaccountability

Attributes : u € Set of Subjects, u, € Set of Subject

if (typeof (uq, SysAdm) € C) then

L A

end if

Va € PRT,ifu € a, obtain the tuple (u, T space, tstart, tend) // Access PRT
Va € CRT,ifu € a, obtain the tuple (u, sys, Tspace) // Access CRT

Algorithm 5: DEMOTE ROLE: Demotes the role back to the original space role for all the resources

Function Name : demoterole
Attributes : u € Set of Subjects
Return Value : Demoted Role

for (each resource) do

currentrole(rgys, context), where typeof (u,rsys) € C // Demote role
Vi € PRT, if currentTime() < W, such that W, € i // Update PRT

PRT = PRT U {(u, Tspace; tstart, currentTime()) }

1:
2
3
4: PRT = PRT — {(U; Tspace Lstarts Wo)}
5
6:

end for

a promoted subject when the critical event has
been controlled. If the current time returned by
currentTime() is less than W, it updates the <stop
time of the role-promotion> element of the corre-
sponding PRT entry to the current time. This is done
because PRT is used to record the duration when a sub-
ject had elevated access in the system only.

The system needs to continuously monitor for the
occurrence of critical events in order to decide when
to enter and exit the CAAP-mode. In our specification,
this is achieved by the function noti fyCritical.
Notification: The function notifyCritical (Algo-
rithm 3) has following five aspects:

1) To continuously monitor the system for critical
events (using Criticality which returns 0 when there
is no criticality) and start the CAAP when a critical
event occurs.

2) Identifying the appropriate subjects who can deal
with a critical event using the function findUser.

3) Notifying the subjects identified to handle criti-
cality. The noti fy function is used for this purpose. It
takes as input the result of findU ser, the current crit-
icality level and the associated W,,. If the notification
has already been sent to the subject for the same criti-
cality level, it returns false otherwise it returns true.

4) Promoting the roles of the subjects (using
promoterole) to provide them necessary privileges,
on resources, for handling the critical event.

5) Demoting the subject roles when the effects of

critical events are handled or go beyond control, using
the demoterole function and returning the system to
normal state.

Specifications for the functions Criticality,
findUser, notify, calculaterole, calculatetime,
and start_timer are application dependent and
therefore are abstracted out.

5.2.2 Administrative Policies

For adding/removing subjects, roles and managing the
smart spaces within the system, we use the policies
given in [9]. We however incorporate an additional
policy for maintaining accountability (Algorithm 4)
within the system. The function basically, returns the
details of the PRT and a Current-Role-Table (CRT ta-
ble is used to store the current space role of a user) for
a particular user. The presence of role accountability
allows the administrator to find out which roles were
promoted, when they were promoted and for what re-
sources.

6 Validation

In this section we present informal proof sketch for
validating the policy specifications given above. In all
our proofs, we assume all access control policies exe-
cute correctly, all the administrative entities are trusted
and the policies and system log cannot be accessed in
a unauthorized manner. It needs to be emphasized that

space roles of subjects are not promoted in normal sys-
tem state, but only during CAAP-mode.

Theorem 6.1 The system can enter CAAP-mode if
and only if there is a critical event.

Proof First, we prove the if part. If there is a crit-
icality, function promoterole is called (in line 24 of
Algorithm 3) and line 3 of promoterole (Algorithm
2) will be executed.

Now we prove the only — i f part. If the role of a sub-
ject is promoted, it means that line 4 of promoterole
has been reached earlier and this can happen only in
case of a critical event. As promoterole implements
CAARP, the result follows. |}

The above theorem validates that if there is no crit-
icality, the access control policies and the administra-
tive policies are not affected due to the process of role-
promotion thus satisfying the Correctness requirement
of CAAC. The next theorem proves that any role pro-
motion done on a subject’s role can be promoted (when
a critical event occurs) only for a finite amount of time,
satisfying Liveness requirement of CAAC.

Theorem 6.2 For a single critical event, a subject’s
role is promoted for a maximum of W, time (i.e
maz(Tcaap) = W,), where W, is the window-of-
opportunity to control the effects of the critical event.

Proof From Theorem 6.1 and the assumption than
roles are not promoted in normal system state, it fol-
lows that role can not be promoted in non-critical con-
text i.e. when a subject’s role is promoted, it is evident
that a W, timer has been started for the critical event
for which the role has been promoted. The promoted
role of a subject is demoted in the following cases:

1) Line 11 of Algorithm 3: If the window-of-
opportunity expires. Here Tocaap = W,,.

2) Line 5 of Algorithm 3: If there is no criticality,
but the system state is in CAAP-mode. This can only
happen if a critical event has been controlled before
its window-of-opportunity (I'roc < W,). Therefore,
Teaap = Troc-

3) Line 14 of Algorithm 3: If the window-of-
opportunity has not expired, but all actions for han-
dling the critical event have been taken i.e. Try <
W,. Then Tcaap = Tgy, where Tgy is the instant
when all the action have been taken.

Therefore for a single critical event, the subject’s role
is promoted for a maximum of W,. |}

As the role promotion is done for a finite amount
of time, it should be notified immediately and not hin-
der the handling of the effects of a critical event, the
following theorem proves this property satisfying the
Responsiveness requirement of CAAC.

Theorem 6.3 When a critical event occurs - 1) the
subject is immediately notified, 2) if required the sub-
Jject’s access privileges are elevated (role promotion),
and 3) any role promotion is active until either the
criticality is controlled or it cannot be controlled any
more.

Proof The proofs of the claims above are as follows:

1) When there is a criticality, the subjects are notified
in line 22 of Algorithm 3.

2) If the subject being notified already has required
privileges, its role is not promoted as the call for the
function calculaterole in line 3 of Algorithm 2 does
not return elevated space-role (by definition). Other-
wise, the function calculaterole returns an elevated
space-role based on the level of criticality, thus pro-
moting the subject’s role.

3) From Theorem 6.1 and the assumption that roles are
not promoted during normal system state, we know
that role promotion is done when there is a critical
event and from Theorem 6.2 it follows that role is pro-
moted until either the criticality is controlled or the
time to take preventive action (W,) expires. |

Until now, we have concentrated on the system
functionality, during the occurrence of critical events.
Now, we focus on the safety of the system. It fol-
lows from Theorem 6.1 that the safety of the system
is not compromised if there is no critical event, sat-
isfying the Non-Interference requirement of CAAC.
However, when there is a critical event, the process
of role-promotion can make the safety of the system
vulnerable to potential malicious activities of the sub-
ject whose role is promoted. The following theorem
explores the effects of role-promotion while handling
criticality on the level of safety provided by the sys-
tem. We prove that by providing non-repudiation ca-
pabilities and restricting the role promotion to a fi-
nite amount of time, any malicious intent is deterred
and the system is safeguarded satisfying the Non-
Repudiation requirement of CAAC.

Theorem 6.4 Malicious use of promoted role after the
occurrence of a critical event is non-repudiable and
limited to a finite amount of time.

Proof Line 4 in Algorithm 2 and line 5 Algorithm 5
ensure that whenever a role is promoted it is recorded
in PRT along with the appropriate start and end times
enforcing non-repudiation of any malicious activity by
a subject due to role promotion. As we assume that all
the access control policies execute correctly, the PRT
table is accurately updated. Further, as the PRT is as-
sumed to be secured from any unauthorized access,
and the administrator is a trusted entity, line 2 of Al-
gorithm 4 can be used for ensuring non-repudiation.
From Theorem 6.1 and Theorem 6.2, it follows that in
occurrence of a critical event, the maximum time the
role can be promoted is W, thereby limiting potential
malicious activity to a finite amount of time. [}

7 Discussion

An access control system has three main aspects
- context collection, access control decision making
(which includes what decision to make and by whom)
and enforcing the decisions. So far, in the previous
section we have given details about what decisions are
made in CAAC and how they are enforced. In this
section we concentrate on the remaining aspects - con-
text collection and deciding the access control decision
making component.

One of the ways to gather contextual information
is by using a network of wireless sensors. Recent ad-
vancement of MEMS technology has enabled sensors
to be smart, tiny and communication enabled, thereby
making them ideal for monitoring contextual informa-
tion. The context information collected by the sen-
sors can be aggregated, within the network, to produce
composite contextual information, which enables the
system to determine the presence and level of critical-
ity. Our system requires continuous system monitor-
ing for the occurrence of criticality. Individual sensors
have very limited capabilities (low battery, processing,
memory), therefore any continuous monitoring of con-
text information may not be feasible [14]. The access
control policies therefore may have to be tuned such
that automatic criticality monitoring is optimized to in-
crease the sensor network lifetime. Though any such
optimization is application dependent, a standard pa-
rameter that can be used is the knowledge of the fre-
quency of criticality within the system. Knowing this
parameter, the system can monitor (collect contextual
information) only during the time when it expects a
criticality to occur. If the probability of occurrence of

a critical event at a given time is p, then the frequency
of monitoring is directly proportional to p. The usage
of sensor network in our access control system also
imposes certain other issues such as: network reliabil-
ity, fault-tolerance, communication security . Though
they do not affect our policies directly, however they
will affect the actual working of the system in terms of
context collection [14].

Access control decisions in a system can be made
in two ways: centralized and distributed. Centralized
schemes require the presence of a central controller
entity which collects all contextual information and
makes the requisite access control decisions based on
the policies. Though they are easy to manage, they
impose a single point of failure on the system. On
the other hand, distributed schemes impose the deci-
sion making on each resource present within the sys-
tem. Therefore each resource needs to be intelligent.
This increases the complexity of individual resources,
however one resource malfunction does not disable the
system.

8 Related Work

Role Based Access control was first thoroughly
studied in the seminal paper by Sandhu et al. [3]. This
paper defined the basic components of RBAC such as
user, roles, privileges, their interactions (constraints
and hierarchy). By decoupling the process of directly
associating privileges with a user, RBAC provided an
effective and easy way of managing security within a
system. Further it allowed easy implementation and
enforcement of complex access control policies within
the system. The concept of RBAC was generalized
in [4] by incorporating subject roles, object roles and
environment roles. As most systems are dynamic in
nature, RBAC was further extended by including vari-
ous context information in the access control decision
making process. Some of the important work in CA-
RBAC include [5] which considered the spatial, tem-
poral and resource context in access control decision
making, [7] presents team based access control model
which is context-aware. The idea of context-sensitive
access control was formally specified in [6], which at-
tempted to perform access control based on the con-
text of the requested operation. McDaniel [8] suggests
that context specification in CA-RBAC is implementa-
tion dependent. Strembeck et. al. [11][12] provide an
integrated framework to engineer and enforce context

constraints in RBAC.

Sampamane et. al. [9] present context-aware access
control policies for smart spaces. They only consider
spatial and subject context and define mode of access
as Individual, Shared or Collaborative depending on
the access privileges and the number of the subjects in
the active space. The ideas from this work were further
extended and implemented in [10], which presents an
infrastructure for context aware access control and au-
thentication in smart spaces. A dynamic context aware
access control scheme for distributed health-care ap-
plications was presented in [13]. All these schemes are
to large extent reactive in nature and do not consider
the requirement of automated services when a critical
event occurs.

9 Conclusion

In this paper we presented a new framework for
specifying access control policies in smart spaces
called Criticality-Aware Access Control (CAAC). The
framework is developed by extending the existing CA-
RBAC model by including a new concept of critical-
ity. We also presented an architecture for CAAC which
contains a criticality management component for han-
dling critical contexts. We identify five basic require-
ments for our system to meet while handling criti-
cality. They are: Responsiveness, Correctness, Non-
Interference, Liveness and Non-Repudiability. Further,
we presented a detailed description of a sample ac-
cess control model and policies built under the CAAC
framework and proved that it satisfied the aforemen-
tioned five basic requirements. In this paper we have
taken a decidedly temporal view in modeling critical-
ity, however work needs to be done to study other mod-
eling techniques.

References

[1] L.Cook. “Staying current on defibrillator safety”.
In Journal of Nursing (33)11, Nov 2003.

[2] E.Dijkstra. “Guarded Commands, non determi-
nacy and formal derivation of programs”. In Com-
munications of the ACM (18)8, 1975.

[3] R.Sandhu, E.J.Coyne, H.L.Feinstein and
C.E.Youman. “Role Based Access Control
Models”. In IEEE Computer, Feb, 1996.pp 38-47

[4] M.J.Moyer and M.Abamad. “Generalized Role
Based Access Control”. In Proc. of 21st Int. Conf.
Distributed Computing System, 2001

[5S] M.J.Covington, W.Long and S.Srinivasan. “Se-
cure Context-Aware Applications Using Environ-
mental Roles”. In Proc. of 6th ACM Symp. on Ac-
cess Control Models Tech., 2001

[6] A.Kumar, N.Karnik and G.Chafle. “Context Sen-
sitivity in Role-based Access Control”. In ACM
SIGOPS Operating System Review 36(3), July,
2002

[7] C.K.Georgiadis, [.Mavridis, G.Pangalos and
R.K.Thomas. “Flexible Team-Based Organiza-
tional Access Control using Contexts”. In Proc. of
6th ACM Symp. on Access Control Models Tech.,
2001

[8] P.McDaniel. “On Context in Authorization Pol-
icy”. In Proc. of 8th ACM Symp. on Access Con-
trol Models Tech., 2003

[9] G.Sampemane, P.Naldurg and R.H.Campbell.
“Access control for Active Spaces”. In Proc. of
ACSAC, 2002

[10] J.Al-Muhtadi, A.Ranganathan, R.H.Campbell
and M.D.Mickunas. “Cerberus: A Context-Aware

Security Scheme for Smart Spaces”.
IEEE Percom, 2003

In Proc.

[11] G.Neumann and M.Strembeck. “An approach
to engineer and enforce context constraints in an
RBAC environment”. In Proc. of 8th ACM Symp.
on Access Control Models Tech., 2003

[12] G.Neumann and M.Strembeck. “An integrated
approach to engineer and enforce context con-
straints in RBAC environments”. In ACM TISSEC
7(3), 2004, pp 392-427

[13] J.Hu and A.C.Weaver. “Dynamic, Context-aware
Security Infrastructure for Distributed Healthcare
Applications”. In Proc. 1st Workshop on Pervasive
Security, Privacy Trust, 2004

[14] LFE.Akyildiz, W.Su, Y.Sankarasubramaniam and
E.Cayirci. “A Survey on Sensor Networks”. In
IEEE Communications Magazine 40(8), 2002, pp
102-114

