Centralized Algos for constructing MST

Kruskal: Assumptions: simple graph, no parallel edges

1. Order edges in ascending order of edge weights
2. Add an edge to the "partial" tree if no cycles are formed.
3. Stop when n-1 edges have been added.
Prim Algorithm:

Let \(T \) be partial tree with start node.

\(T = (\{s_3\}, \emptyset) \)

1. for \(n-1 \) step
 - find the lowest weight edge \(e \) from \(T \) to \(T' \)
 - add \(e \) to \(T \).
MST Property

Let \(G \) be a weighted graph and let \(V_1 \) and \(V_2 \) be a partition of vertices of \(G \) into two disjoint, non-empty sets. Furthermore, let \(e \) be an edge in \(G \) with minimum weight from among those with one end point in \(V_1 \) and the other in \(V_2 \). There is a MST \(T \) that has \(e \) as one of its edges.
Proof by contradiction.
- Assume e is not a part of any MST.
- Let T be a MST
- adding e forms a cycle with e' in it.
- removing e' we get another tree with lower weight. - contradicting the assumption that T was MST
Barvinka's Algo.

Input: A weighted graph $G = (V, E)$ with n vertices and m edges.

Output: A MST T for G.

1. Let T be a subgraph of G, initially containing just the vertices in V.
2. While T has fewer than $n-1$ edges do
 1. For each connected component C_i of T do:
 1. Find the smallest-weight edge $e(v, u)$ in E with v in C_i and u not in C_i.
 1.6 Add e to T.
3. Return T.
Time complexity? $O(n \log n)$

1. The number of rounds is $O(\log n)$ since at each step the number of components is halved in the worst case.
2. Selection of minimum weight edges across component edges can be done in $O(n)$ time at each round.

Converting all edge weights to uniform edge weights: $1 \rightarrow 1.00012\ldots$,
$2 \rightarrow 3.00043\ldots$,
$3 \rightarrow 3.50067\ldots$,
Barwke Algo - Distributed (Synchronous)

1. Let T be partial tree - initially with only nodes & no tree edges.
2. While there is no more than one connected component defined by T do
 a. for each connected component C in parallel do
 i. choose the smallest edge e joining C to another component
 ii. add e to the set T of tree edges
Two implementation issues:
1. Identifying connected components
2. For each connected component, finding the minimum weight edge.