Q1

2. \(ND \leq NA \)

3. \(ND \leq (K + 1)X + \min(d_i) \)
 \(NA = \sum d_i \)
 \(X \leq \min(d_i) \)
4.

\[4 = 2 + 2 \]

3
Suboptimal tree construction methods.

1. Center at Nearest Source.
2. Shortest Path Tree.
3. Greedy

Incremental Tree (GIT)

1. Initially the sink node is the only node in the tree T (correct)
2. At each step add the closest source node to T
Shortest Path Tree

1. For each source S_i, find the shortest path P_i to sink node S_i

2. Combine, path P_i & P_j if they meet at some intermediate point.
Theorem

If subgraph G' induced by the source nodes is connected then the optimal tree can be formed in polynomial time.

$G : V, E$

$G' : V_{es_1}, \ldots, V_{es_k}$

$e, e \in E$ and both the endpoints are in V'

G' is induced graph by set V'
Proof: Consider GIT

1. 1st source connected to tree will be at \(\min(d_i) \) distance

2. at each remaining \(k-1 \) steps
 - one source can be added at the cost of 1 additional transmission
Total tree cost = \text{min}(d_i) + K - 1 \text{ transmissions} = \text{lower bound on the cost of} \text{ DC tree} \text{ hence is optimal}

\text{GIT is polynomial time algorithm since it is } O(K.n^2)

\text{Corollary Theorem} \quad \text{In the ER model, when } R > 25 \text{, the optimal data aggregation tree can be formed in polynomial time}
MST - Minimum-weight spanning tree
- Each edge e has weight $w(e)$ associated with it.
- $W(T) = \sum_{e \in T} w(e)$, T is a tree.
- A minimum weight spanning tree (MST) is a spanning tree with minimum possible weight among all spanning trees.
An interesting property of MST...

Partition A

Partition B

link with minimum weight among e_1, \ldots, e_k is guaranteed to be e_i.

Then \exists a MST with e_i in it.