\[
m\text{Ah} \quad \frac{\text{mAs} \times V}{60^2} \quad \rightarrow \quad \text{M Watts per s} \\

\text{MJ/w/s} \\

\text{HW 1 due tomorrow}
\]

email to valliappan@asu.edu

\text{Professor}
Constructing Spanning tree

Flooding based protocol for tree construction

1) Prove that the protocol would construct a tree
 - proving that no cycles are formed
 - all nodes will be covered.

2) We need to specify the protocol
 - Message Types
 - Local Data Structure
 - Events and actions

neighbors: set of process ids
children: your own id.
1. Initially
 i : my own id
 r : root node id
 neighbors : are set of neighbors i) i in the network
 parent : nil
 children : empty set (Ø)
 others : Ø

2. Upon start
 if i = r and parent = nil then
 1. send M to all neighbors
 2. parent = i

3. Upon recv M from neighbor Pj
 1. If parent is nil then
 a. send <parent> to Pj; b. parent = Pj
 2. Else send <reject> to Pj
4. Upon recv of \(<\text{parent}>\) from \(p_j\)
 a. add \(p_j\) to children set union operator
 b. if children \(U\) others \(\cap\) contains all neighbors except parent then terminate.

5. Upon recv of \(<\text{reject}>\) from \(p_j\)
 a. add \(p_j\) to others
 b.

Q: Does it work for Asynchronous Model?
 -

Q: Complexity?
 Message Complexity: \(2 \times E\times\text{msg}\times(E\text{ is number of types of edge in the network})\)
 \(\Rightarrow 0(E)\) for both for Sync & async model
Time Complexity:

- Synch. Model: $O(D)$
 - D: diameter of the network
 - max of shortest distance between any two nodes in the network

- Async Model: $O(N)$
 - since in the worst case the async protocol may construct a "chain"