What is Computer Architecture?

- CA = ISA + O + H
 - ISA – Instruction Set Architecture
 - O – Organization
 - H - Hardware

- Computer architect designs a computer
 - to meet functional requirements AND
 - to meet price, performance and availability goals
Course Goals

1. To understand fundamentals of instruction set design, processor design to exploit parallelism (ILP, TLP, DLP), memory-hierarchy design, storage system design.

2. To understand the current trends in CA
 » shift from single processor (core) chips to multiprocessor on chips (multi-core) to optimize performance/watts,
 » increasing focus on dependability – to address more hard/soft errors at smaller feature sizes < 65nm.
Course Goals - Indirect

• To enrich with new ideas
• To train you in systems oriented thinking
• To prepare you for research in computer architecture – but more generally – in computer systems (CA+Compiler+OS+Application)
More Pictorially …..
Architecture?
How Computer Architectures evolved?

http://en.wikipedia.org/wiki/Alan_Turing
Why Multicore Architectures?

An AMD Athlon X2 6400+dual-core processor

Source: http://en.wikipedia.org/wiki/Multi-core_processor

Why companies are very secretive about their Datacenter’s Architecture? And Why (Mega) Datacenters are situated near large electricity power plants?
Processor Virtualization

![Intel Virtualization Technology]

- Without Virtualization:
 - App
 - App
 - App
 - OS
 - Platform Hardware

- With Virtualization:
 - OS
 - OS
 - OS
 - Virtual Machine Monitor
 - Intel Virtualization Technology
 - Platform Hardware

VMM = Layer of system software
Enabled multiple OS’s to share hardware
Vanderpool Technology can allow OS & Apps to run without modifications

Virtualization Technology-enhanced hardware capabilities to facilitate virtualization
And Much More…

- Dynamic Scheduling: Tumasulo’s Algorithm
- Virtual Memory
- Protection and Synchronization Mechanisms
- Shared memory architectures
- Storage Architectures: RAID
That is ...

CSE230 Goal 1 “To provide an exposure to the organization and implementation of a computer system at the hardware level.”

- The student can identify the five major components of a computer system and describe how the components interact and the effect on the system as a whole.
- The student can describe data representation, the instruction set, addressing modes, and register organization.
- The student can describe the execution of instructions, and the hardware components used in each step.
- The student can identify several approaches to processor implementations: Single cycle, Multi-cycle, Pipelined, Superscalar.
- The students can describe various memory organizations including virtual memory and cache organization structures.
- The student can describe what busses are and describe their role in connecting the major system components.
- The student can describe how processor identifies different sources of interrupts and exceptions and invokes the corresponding handler to deal with the interrupt or exception.
That is … (Cont.)

- CSE230 Goal 2 “To develop an introductory understanding of assembly language and the relationship between computer hardware and machine code/assembly code.”
 - The student can develop assembly language programs that include flow control constructs (sequential, conditional and iterative).
 - The student can develop assembly language programs, including subroutines employing modularity, readability and reliability principles.
 - The student can develop assembly-language programs that use the stack to save register contents, pass parameters to subroutines, and create stack frames for local variables.
 - The student can develop a basic interrupt handler routine
 - The student can develop a basic IO handler routine
That is … (Cont.)

- CSE 230 Goal 3: “To develop the tools necessary to analyze the performance of computer architecture and organization.”
 - The student can identify various metrics to evaluate the performance of computer systems.
 - The student can evaluate memory cache performance.
 - The student can identify several I/O performance measures.
Course Pre-req

- CSE 230 (new) – Computer Organization and Assembly Language Programming
 http://cse.asu.edu/courses.descriptions/230.php
- CSE 330 (old) – Computer Organization, CSE 225 – Assembly Language programming
- Knowledge of C and Assembly Language Programming
Course Info

Instructor
Georgios Varsamopoulos
BY 514
Mon, Tue, Wed 3:30pm – 4:30pm

Teaching Assistant
Wei Wu
BYENG 531AB
Tue, Thu 3pm – 4pm

- Use of webpage http://impact.asu.edu/cse430sp11.html for material,
- Use of Blackboard as a dropbox (SafeAssign)
- Take Notes! Most testing methods are open-note.
About the instructor

- **Name:** Georgios Varsamopoulos
- **Title:** Research Assistant Professor
- **Joined ASU:** 2007 as a post-doctorate researcher
- **Research Lab**
 - Impact Lab: http://impact.asu.edu/
- **Research Projects** *(REU positions available)*
 - Thermal-aware and sustainable management of computing systems
 - BlueTool: Research Infrastructure for sustainable data centers
- **Interests**
 - resource allocation and management, computer networks, sustainable computing, performance optimization, cyber-physical models
Concerns

• Your Concerns
 - Amount of work
 - Difficulty of programming
 - Required background
 - Usefulness of the course

• My concerns
 - Here-for-grade or here-for-degree mentality
 - Starting homework a couple of days before it is due
 - Not using knowledge from previous experience
 - Not participating and not challenging the information given
 - Plagiarism and other forms of cheating
 - Seeing students give up and fail
Course Workload

- Pop quizzes roughly on a biweekly basis
- About 4 homework assignments
- One Prerequisite exam
 - Mid September
- Two midterms
 - Early October
 - Early November
- A project
 - Groups mandatory
 - Start early October
 - May replace final exam

Grading distribution:
- 20% homework assignments
- 10% quizzes
- 25% project/exam (Exam can replace a midterm grade)
- 20% each midterm
- 5% active attendance (in-class participation)

Grading Rubric:
- Ability to solve problem
- Understanding of background
- Creativity
- Clarity
My biggest concern

- Technical writing skill
 - In four words: brief, exact, complete, clear

- Research resources
 - The quality and authenticity of your sources is a defining factor of your work's quality
 - The web and wikipedia is ok as a start.
 - Did you know of Google Scholar (scholar.google.com)?
 - Have you ever used the ACM and IEEE online libraries?

- Please pay particular attention to your technical writing and your written expression skills.
PreReq: Fallacies and Pitfalls

- **Fallacy**: “Pre-req don’t matter, I am smart enough to pick it up during semester.”
- **Fallacy**: “Instructor doesn’t care about Pre-req.”
- **Pitfall**: Attempting to do assignments and exams without getting sound grasp on pre-req material
Course Books

- Computer Architecture: A Quantitative Approach (Fifth Edition) by John L. Hennessy and David A. Patterson
Course Mechanics

• Assignments : 20%
 – involves solving problems and programming in C/Java/Assembly
• Quizzes & in-class Participation: 10%
• Projects/Term Paper: 30%
 – Progress report 5%, Presentation/Poster 10%, Final Paper 15%
• Exams : 30%
 – One prereq exam, two midterms and one final
A Note about “RAQ” Hazard

- RAQ = “Read After Quiz”
- Quizzes can be unannounced
- Meant to make sure you are in SYNC with the class
- Reduce some pressure for Exam preparation
- Read the material (book, slides, paper etc.) before coming to class
“No Distraction” Policy

• No Laptops/Netbooks/Cell Phone/News Papers etc.

• Laptops/Netbooks may be permitted – only with instructor’s permission
Cheating/Plagiarism Policy

- Strictly prohibited
- See University policy
- My policy
 - First offense: zero grade for the entire assignment & personal appointment
 - Repeat offense: reporting action as per the University policy
Grad. Student Work++

• Graduate students are expected to demonstrate a deeper understanding of the subject material.
• At times, graduate students will be assigned more challenging assignments and exam problems
 - Paper reading and presentation
 - Solving more difficult problem
 - Short (team) projects
Class Format

- Quiz (10 min)
- Quiz review + Recap (5 min)
- Lecture (45 to 55 (when no Q) min)
 - Take Notes!
 - (If used) Slides will be posted after the class
- Discussion (10)
 - Take Notes!
- Assignment Qs/Next Class (5 min)
 - Take Notes!
- You can use your notes in most forms of examination except otherwise stated.
Class Cyberpresence

- http://impact.asu.edu/cse420fa11.html
 - class assignments
 - Solutions
 - Slides
 - reference material

- Visit regularly for latest information
- Blackboard: Dropbox (SafeAssign) and other supplementary material.
What can you expect from this course?

• Lots of in-class interaction
• Interesting and challenging assignments and exam questions
• Help/Tutorials on difficult material
• And lot more!
NSF REU positions available

- Contact me if you are interested in working with my graduate students on NSF projects on Green Computing, Pervasive Health monitoring, Mobile Computing, Wireless Sensor Networks, Information Security/Privacy, Energy-Efficient Computing.
What’s Next?

- Next Class: Fundamentals of Computer Design – CH1 CA-QA
- Start reading Chapter 1
- Plan for next few lectures: Fundamentals of Computer Design (Ch1) Review of ISA (Appendix B), Memory Hierarchy (Appendix C) and Pipelining (Appendix A)