Floating point representation in computer systems

(Slides adapted from CSAPP book)
Announcements

- Due date for the programming assignment is coming! Next class
- A Google group is created for the class (CEN591Fa11), sign up and post your concerns/questions about the lectures and homework
Summary of Previous class

- Data representation in machines and Bit manipulations

- Integers
 - Signed and unsigned integers
 - Integer casting, truncating
 - Integer negation and addition (subtraction)

- This class: Integer multiplication and division, float representation, IEEE float format
Agenda

- Integer multiplication and division
- Fractional Binary numbers
- IEEE floating point representation
- Floating point rounding, addition, and multiplication
- Float in C
- Summary
Integer multiplication and division
Integer Multiplication

- Computing Exact Product of w-bit numbers x, y
 - Either signed or unsigned

- Ranges
 - Unsigned: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Up to 2^w bits
 - Two’s complement min: $x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2^{w-1} bits
 - Two’s complement max: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2^w bits

- Maintaining Exact Results
 - Would need to keep expanding word size with each product computed
Unsigned Multiplication in C

Operands: w bits

True Product: $2w$ bits

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic
 \[\text{UMult}_w(u, v) = u \cdot v \mod 2^w \]
Signed Multiplication in C

Operands: w bits

True Product: 2^w bits

Discard w bits: w bits

- **Standard Multiplication Function**
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same
Three-bit unsigned and Two’s comp multiplication (Overflow examples)

<table>
<thead>
<tr>
<th>Mode</th>
<th>x</th>
<th>y</th>
<th>x.y</th>
<th>Truncated x.y</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>5</td>
<td>101</td>
<td>011</td>
<td>15</td>
</tr>
<tr>
<td>T</td>
<td>-3</td>
<td>101</td>
<td>011</td>
<td>-9</td>
</tr>
<tr>
<td>U</td>
<td>4</td>
<td>100</td>
<td>111</td>
<td>28</td>
</tr>
<tr>
<td>T</td>
<td>-4</td>
<td>100</td>
<td>111</td>
<td>4</td>
</tr>
<tr>
<td>U</td>
<td>3</td>
<td>011</td>
<td>011</td>
<td>9</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>011</td>
<td>011</td>
<td>9</td>
</tr>
</tbody>
</table>

U: Unsigned
T: Two’s complement
Power-of-2 Multiply with Shift

Operation
- \(u << k \) gives \(u \times 2^k \)
- Both signed and unsigned

Operands: \(w \) bits

<table>
<thead>
<tr>
<th>True Product: (w+k) bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u \times 2^k)</td>
</tr>
</tbody>
</table>

Discard \(k \) bits: \(w \) bits

\[\text{UMult}_w(u, 2^k) \]
\[\text{TMult}_w(u, 2^k) \]

Examples
- \(u << 3 \) \(== \) \(u \times 8 \)
- \(u << 5 - u << 3 \) \(== \) \(u \times 24 \)
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Integer division by powers of 2

- Integer division expectation: result should always be rounded toward zero

<table>
<thead>
<tr>
<th>real</th>
<th>Rounding toward zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.14</td>
<td>3</td>
</tr>
<tr>
<td>-3.14</td>
<td>-3</td>
</tr>
</tbody>
</table>

- Operator:
 \[\lfloor a \rfloor = a' \Rightarrow a' \leq a \leq a'+1 \]
 \[\lfloor 3.14 \rfloor = 3, \lfloor -3.14 \rfloor = -4 \]

- \(x \) divided by \(y = \lfloor x / y \rfloor \) if \(x \geq 0 \), and \(y > 0 \)
Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - \(u >> k \) gives \(\left\lfloor u / 2^k \right\rfloor \) [Yielding Proper result]
 - Uses logical shift

Operands:

\[
u \quad k
\]

\[
\begin{array}{c|c|c|c|c}
& 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & 0 \\
\hline
u / 2^k & 0 & \cdots & 0 & 0 & & & & \\
\end{array}
\]

Division:

\[
u / 2^k
\]

\[
\begin{array}{c|c|c|c|c}
& 0 & \cdots & 0 & 0 \\
\hline
\left\lfloor u / 2^k \right\rfloor & 0 & \cdots & 0 & 0 \\
\end{array}
\]

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>950</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
</tr>
</tbody>
</table>

CEN591 Fall 2011
Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - \(x >> k \) gives \(\lfloor x / 2^k \rfloor \)
 - Uses arithmetic shift
 - Rounds wrong direction when \(u < 0 \)

![Diagram of division with shift](image)

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>(-15213)</td>
<td>(-15213)</td>
<td>C4 93</td>
</tr>
<tr>
<td>(y >> 1)</td>
<td>(-7606.5)</td>
<td>(-7607)</td>
<td>E2 49</td>
</tr>
<tr>
<td>(y >> 4)</td>
<td>(-950.8125)</td>
<td>(-951)</td>
<td>FC 49</td>
</tr>
<tr>
<td>(y >> 8)</td>
<td>(-59.4257813)</td>
<td>(-60)</td>
<td>FF C4</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

- Want \(\left\lfloor \frac{x}{2^k} \right\rfloor \) (Round Toward 0) for negative results
 - Compute as \(\left\lfloor \frac{x + 2^k - 1}{2^k} \right\rfloor \)
 - In C: \((x + (1<<k) - 1) >> k\)
Fractional Binary numbers
Fractional Binary Numbers

What is 1011.101_2?

Representation

- Bits to right of “binary point” represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$
Fractional Binary Numbers: Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.111₂</td>
</tr>
<tr>
<td>63/64</td>
<td>1.0111₂</td>
</tr>
</tbody>
</table>

Observations
- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111…₂ are just below 1.0
- \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^i} + \ldots \rightarrow 1.0 \)
- Use notation 1.0 – ε
Representable Numbers

- **Limitation**
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

- **Value**
 - **1/3**: $0.0101010101[01]..._2$
 - **1/5**: $0.001100110011[0011]..._2$
 - **1/10**: $0.0001100110011[0011]..._2$
IEEE Floating point
IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs

- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard
Floating Point Representation

- **Numerical Form:**
 \[(-1)^s \, M \, 2^E \]
 - **Sign bit** \(s \) determines whether number is negative or positive
 - **Significand** \(M \) normally a fractional value in range \([1.0, 2.0)\).
 - **Exponent** \(E \) weights value by power of two

- **Encoding**
 - **MSB** \(s \) is sign bit \(s \)
 - **exp** field encodes \(E \) (but is not equal to \(E \))
 - **frac** field encodes \(M \) (but is not equal to \(M \))
Precisions

- Single precision: 32 bits

 - s
 - exp
 - frac
 - 1 8-bits 23-bits

- Double precision: 64 bits

 - s
 - exp
 - frac
 - 1 11-bits 52-bits

- Extended precision: 80 bits (Intel only)

 - s
 - exp
 - frac
 - 1 15-bits 63 or 64-bits
Types of numbers in IEEE floating points

- Normalized values
- Denormalized values
- Special values
Normalized Values

- Condition: exp \(\neq 000\ldots0\) and exp \(\neq 111\ldots1\)

- Exponent coded as **biased** value: \(E = \text{Exp} – \text{Bias (signed exponent)}\)
 - \(\text{Exp}\): unsigned value exp
 - \(\text{Bias} = 2^{k-1} - 1\), where \(k\) is number of exponent bits
 - Single precision: 127 (Exp: 1…254, E: \(-126\ldots127\))
 - Double precision: 1023 (Exp: 1…2046, E: \(-1022\ldots1023\))

- Significand coded with implied **leading** 1: \(M = 1.xxx\ldotsx_2\)
 - \(xxx\ldotsx\): bits of frac
 - Minimum when 000\ldots0 (\(M = 1.0\))
 - Maximum when 111\ldots1 (\(M = 2.0 – \varepsilon\))
 - Get extra leading bit for “free”
Normalized Encoding Example

- **Value:** Float $F = 15213.0$;
 - $15213_{10} = 11101101101101_{2}$
 - $= 1.1101101101101_{2} \times 2^{13}$

- **Significand**

 $M = \underline{1.1101101101101}_{2}$

 $frac = \underline{11011011011010000000000000}_{2}$

- **Exponent**

 $E = 13$

 $Bias = 127$

 $Exp = 140 = 10001100_{2}$

- **Result:**

 $0 \ 10001100 \ 11011011011011010100000000000000$
Denormalized Values

- Condition: \(\text{exp} = 000\ldots0 \)

- Exponent value: \(E = -\text{Bias} + 1 \) (instead of \(E = 0 - \text{Bias} \))

- Significand coded with implied leading 0: \(M = 0.\text{xxx}\ldots\text{x}_2 \)
 - \(\text{xxx}\ldots\text{x} \): bits of \(\text{frac} \)

- Cases
 - \(\text{exp} = 000\ldots0, \text{frac} = 000\ldots0 \)
 - Represents zero value
 - Note distinct values: +0 and −0 (are considered different in some ways and the same in others)
 - \(\text{exp} = 000\ldots0, \text{frac} \neq 000\ldots0 \)
 - Numbers very close to 0.0
Special Values

- **Condition:** \(\text{exp} = 111...1 \)

- **Case:** \(\text{exp} = 111...1, \frac{\text{frac}}{} = 000...0 \)
 - Represents value \(\infty \) (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., \(1.0/0.0 = -1.0/-0.0 = +\infty \), \(1.0/-0.0 = -\infty \)

- **Case:** \(\text{exp} = 111...1, \frac{\text{frac}}{} \neq 000...0 \)
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., \(\sqrt{-1}, \infty - \infty, \infty \times 0 \)
Visualization: Floating Point Encodings

-∞ −Normalized −Denorm +Denorm +Normalized +∞ NaN NaN

−0 +0
Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac

- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s exp frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000 000</td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td>0 0000 001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
</tr>
<tr>
<td>0 0000 010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
</tr>
</tbody>
</table>

Denormalized numbers

<table>
<thead>
<tr>
<th>s exp frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000 110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
</tr>
<tr>
<td>0 0000 111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
</tr>
<tr>
<td>0 0001 000</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
</tr>
<tr>
<td>0 0001 001</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
</tr>
</tbody>
</table>

Normalized numbers

<table>
<thead>
<tr>
<th>s exp frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0110 110</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
</tr>
<tr>
<td>0 0110 111</td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
</tr>
<tr>
<td>0 0111 000</td>
<td>0</td>
<td>8/8*1 = 1</td>
</tr>
<tr>
<td>0 0111 001</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
</tr>
<tr>
<td>0 0111 010</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s exp frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1110 110</td>
<td>7</td>
<td>14/8*128 = 224</td>
</tr>
<tr>
<td>0 1110 111</td>
<td>7</td>
<td>15/8*128 = 240</td>
</tr>
<tr>
<td>0 1111 000</td>
<td>n/a</td>
<td>inf</td>
</tr>
</tbody>
</table>
Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1} - 1 = 3$

- Notice how the distribution gets denser toward zero.
Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

![Diagram showing distribution of values with a 6-bit format using 3 exponent bits and 2 fraction bits. The diagram includes a number line with markers for denormalized, normalized, and infinity values.]

-1 -0.5 0 0.5 1

- Denormalized • Normalized ▲ Infinity
Interesting Numbers

Description

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>$2^{-{23,52}} \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Single $\approx 1.4 \times 10^{-45}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Double $\approx 4.9 \times 10^{-324}$</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>$(1.0 - \varepsilon) \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Single $\approx 1.18 \times 10^{-38}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Double $\approx 2.2 \times 10^{-308}$</td>
</tr>
<tr>
<td>Smallest Pos. Normalized</td>
<td>00...01</td>
<td>00...00</td>
<td>$1.0 \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Just larger than largest denormalized</td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>$(2.0 - \varepsilon) \times 2^{{127,1023}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Single $\approx 3.4 \times 10^{38}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Double $\approx 1.8 \times 10^{308}$</td>
</tr>
</tbody>
</table>
Special Properties of Encoding

- FP Zero Same as Integer Zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $-0 = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity
Rounding, addition, multiplication
Floating Point Operations: Basic Idea

- $x +_f y = \text{Round}(x + y)$
- $x \times_f y = \text{Round}(x \times y)$

Basic idea
- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac
Rounding modes

- **Rounding Modes** (illustrate with $ rounding)

<table>
<thead>
<tr>
<th></th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>$-1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>$-1</td>
</tr>
<tr>
<td>Round down ((-∞))</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>$-2</td>
</tr>
<tr>
<td>Round up ((+∞))</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>$-1</td>
</tr>
<tr>
<td>Nearest Even (default)</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$-2</td>
</tr>
</tbody>
</table>
Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under- estimated

- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth
 - 1.2349999 1.23 (Less than half way)
 - 1.2350001 1.24 (Greater than half way)
 - 1.2350000 1.24 (Half way—round up)
 - 1.2450000 1.24 (Half way—round down)
Rounding Binary Numbers

- **Binary Fractional Numbers**
 - “Even” when least significant bit is 0
 - “Half way” when bits to right of rounding position = 100…2

- **Examples**
 - Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00011₂</td>
<td>10.00₂</td>
<td>(<1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00110₂</td>
<td>10.01₂</td>
<td>(>1/2—up)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11100₂</td>
<td>11.00₂</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.10100₂</td>
<td>10.10₂</td>
<td>(1/2—down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
FP Multiplication

\[(-1)^{s_1} M_1 2^{E_1} \times (-1)^{s_2} M_2 2^{E_2} \]

- Exact Result: \((-1)^s M 2^E\)
 - Sign \(s\): \(s_1 \wedge s_2\)
 - Significand \(M\): \(M_1 \times M_2\)
 - Exponent \(E\): \(E_1 + E_2\)

- Fixing
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit \textbf{frac} precision

- Implementation
 - Biggest chore is multiplying significands
Floating Point Addition

\[(-1)^{s_1} M_1 \times 2^{E_1} + (-1)^{s_2} M_2 \times 2^{E_2} \]

- Assume \(E_1 > E_2 \)

Exact Result: \((-1)^s M \times 2^E\)
- Sign \(s \), significand \(M \):
 - Result of signed align & add
- Exponent \(E \): \(E_1 \)

Fixing
- If \(M \geq 2 \), shift \(M \) right, increment \(E \)
- If \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
- Overflow if \(E \) out of range
- Round \(M \) to fit \textit{frac} precision
Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?
 - But may generate infinity or NaN
 - Commutative?
 - Associative?
 - Overflow and inexactness of rounding
 - 0 is additive identity?
 - Every element has additive inverse
 - Except for infinities & NaNs

- Monotonicity
 - \(a \geq b \Rightarrow a+c \geq b+c ? \)
 - Except for infinities & NaNs
Mathematical Properties of FP Mult

- Compare to Commutative Ring
 - Closed under multiplication?
 - But may generate infinity or NaN
 - Multiplication Commutative?
 - Multiplication is Associative?
 - Possibility of overflow, inexactness of rounding
 - 1 is multiplicative identity?
 - Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding

- Monotonicity
 - $a \geq b \land c \geq 0 \Rightarrow a \times c \geq b \times c$?
 - Except for infinities & NaNs
Floating point in C
Floating Point in C

- C Guarantees Two Levels
 - `float` single precision
 - `double` double precision

- Conversions/Casting
 - Casting between `int`, `float`, and `double` changes bit representation
 - `double/float → int`
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to Tmin
 - `int → double`
 - Exact conversion, as long as `int` has ≤ 53 bit word size
 - `int → float`
 - Will round according to rounding mode
Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```c
int x = ...;
float f = ...;
double d = ...;
```

Assume neither `d` nor `f` is NaN

- `x == (int)(float) x`
 No, ex: `TMax`
- `x == (int)(double) x`
 Yes, double precision > int precision
- `f == (float)(double) f`
 Yes, double precision > float precision
- `d == (float) d`
 No, double precision > float precision
- `f == -(f);`
 Yes, Converted to a float point
- `2/3 == 2/3.0`
- `d < 0.0`
 Yes, even under overflow
- `d > f`
 -f > -d
- `d * d >= 0.0`
 Yes, even under overflow
- `(d+f)-d == f`
 No, due to rounding
Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form $M \times 2^E$
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers
Some hints to homework 1
Quiz Solutions

Q1: For a given integer number, how can you mask its n significant bits to 0?

Sample number: $xxxxxxxxxxxxxxxxxxxxxxxxxxxx$
n bits
$32-n$ bits

$$\text{mask} = \sim 0 << (32-n) : 11111100000000000000000000000000$$

$$\text{Result} = x \& \sim \text{mask}$$

Q2: How can you convert an integer x to the integer y such that each group of 4 bits at y represents number of 1 bits at the corresponding 4 bits of x. (ex: $x=0x33333333$, then $y=0x22222222, 0x40404040, y=0x10101010$)

$$\text{mask} = 0x11111111$$

$$y = (x \& \text{mask}) + (x >>1 \& \text{mask}) + (x >>2 \& \text{mask}) + (x >> 3 \& \text{mask})$$

Q3: Given an integer x, add y to x if x is positive. ($x = x+y \text{ if } x \geq 0$)

$$\text{mask} = \sim (x >> 31)$$

$$s = y \& \text{mask} \ (s=0 \text{ if } x \leq 0, \text{ and } s=y \text{ if } x \geq 0)$$

$$x = x + s$$
<table>
<thead>
<tr>
<th>Function</th>
<th>Sample input output</th>
<th>Hints</th>
</tr>
</thead>
</table>
| logicalShift(x,n) | 0 <= n <= 31 | 1- C does arithmetic shift, you have to mask off upper 1’s
| | In: 0x87654321,4 | 2- 32-n?
| |) → out: 0x08765432 | ~0 << (32-n)?? |
| bitCount(int x) | In:(5) out: 2 | 1- calculate number of 1 bits at every 4 bits, and then merge them
| | In:(7) → out: 3 | 2- Assume a Mask such as:
| | | 0x11111111:(10001000…)2
| | | 3- What is the value of s?
| | | S=(x&mask)+(x >>1 & mask) +(x >>2 & mask)+ (x >> 3 & amsk) |
| divpwr2(x,n) | (x/2^n) | 1- Remember to round toward zero
| | In:(15,1) → out: 7 | 2- if x<0 → add bias (i.e., 2^n-1)
| | In:(-33,4) → out: -2| 3- Distinguish the sign of numbers using the MSB
| | | x>>31=0000… (x>=0)
| | | x>>31=1111.. (x<0)
Extra Slides
Compiled Unsigned Division Code

C Function

```c
unsigned udiv8(unsigned x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```
Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\left\lfloor \frac{x}{2^k} \right\rfloor$ (Round Toward 0)
 - Compute as $\left\lfloor \frac{x+2^k-1}{2^k} \right\rfloor$
 - In C: $(x + (1<<k) - 1) >> k$
 - Biases dividend toward 0

Case 1: No rounding

Dividend:

<table>
<thead>
<tr>
<th>u</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>+2k-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Divisor:

<table>
<thead>
<tr>
<th>$u/2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

$[u/2^k]$ =

<table>
<thead>
<tr>
<th>$u/2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: $x + 2^k - 1$

Divisor: $\lfloor x / 2^k \rfloor$

Biasing adds 1 to final result
Compiled Signed Division Code

C Function

```c
int idiv8(int x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```assembly
testl %eax, %eax
js    L4
L3:
    sarl $3, %eax
    ret
L4:
    addl $7, %eax
    jmp  L3
```

Explanation

```plaintext
if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;
```