Computer Systems CEN591(502)
Fall 2011

Sandeep K. S. Gupta
Arizona State University

4th lecture

Data representation in computer systems

(Slides adapted from CSAPP book)
Announcements

- Programming assignment #1 is uploaded in the course web page
 - Due date is Monday Sept. 12
- No Class on Monday Sept. 5th!
- Summary of Lecture Notes will be soon uploaded
 - Will be open for comments from everyone
- Video of Lectures (Maybe if I look good 😊)
Summary of Previous class

- Primers on computer system organization
 - Life cycle of a program execution
 - System architecture
 - OS
 - Computer Network

- This class: Integer Representation in computers
Agenda

- Data representation in machines and Bit manipulations

- Integers
 - Signed and unsigned integers
 - Integer casting, truncating
 - Integer negation and addition (subtraction)
Machine Words

- Machines have “Word Size”
 - Nominal size of integer-valued data
 - Including addresses
 - Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
 - High-end systems use 64 bits (8 bytes) words
 - Potential address space $\approx 1.8 \times 10^{19}$ bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

- Addresses specify byte locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Long int</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long int</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * creates byte array

```c
#include <stdio.h>
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}

main(){
    char data[] = "1234";
    show_bytes(data, 4);
}
```

Result:
0x7fff9f9d3100 0x31 0x7fff9f9d3101 0x32 0x7fff9f9d3102 0x33 0x7fff9f9d3103 0x34

Printf directives:
%p: Print pointer
%x: Print Hexadecimal
Byte Ordering

- How should bytes within a multi-byte word be ordered in memory?

- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86
 - Least significant byte has lowest address
Representing Integers

int A = 15213;

IA32, x86-64 Sun

| 6D | 3B | 00 | 00 |

long int C = 15213;

IA32 x86-64 Sun

| 6D | 3B | 00 | 00 |

int B = -15213;

IA32, x86-64 Sun

| 93 | C4 | FF | FF |

Two’s complement representation (Covered later)

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3 B 6 D

cint A = 15213;

cint B = -15213;

clong int C = 15213;
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0

- **Compatibility**
 - Byte ordering not an issue

```c
char S[6] = "18243";
```
<table>
<thead>
<tr>
<th>Dec</th>
<th>Hx</th>
<th>Oct</th>
<th>Ch</th>
<th>ASCII table</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>000</td>
<td>NUL (null)</td>
<td><code>\0</code></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>001</td>
<td>SOH (start of heading)</td>
<td><code><\033></code></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>002</td>
<td>STX (start of text)</td>
<td><code>!</code></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>003</td>
<td>ETX (end of text)</td>
<td><code>"</code></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>004</td>
<td>EOT (end of transmission)</td>
<td><code>#</code></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>005</td>
<td>ENQ (enquiry)</td>
<td>`?'</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>006</td>
<td>ACK (acknowledge)</td>
<td><code>&</code></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>007</td>
<td>BEL (bell)</td>
<td>`;'</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>010</td>
<td>BS (backspace)</td>
<td><code>()</code></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>011</td>
<td>TAB (horizontal tab)</td>
<td><code>:</code></td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>012</td>
<td>LF (NL line feed, new line)</td>
<td><code>*</code></td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>013</td>
<td>VT (vertical tab)</td>
<td><code>+</code></td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>014</td>
<td>FF (NP form feed, new page)</td>
<td><code>,</code></td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>015</td>
<td>CR (carriage return)</td>
<td><code>-</code></td>
</tr>
<tr>
<td>14</td>
<td>E</td>
<td>016</td>
<td>SO (shift out)</td>
<td><code>.</code></td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>017</td>
<td>SI (shift in)</td>
<td>`/'</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>020</td>
<td>DLE (data link escape)</td>
<td><code>0</code></td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>021</td>
<td>DC1 (device control 1)</td>
<td><code>1</code></td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>022</td>
<td>DC2 (device control 2)</td>
<td><code>2</code></td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>023</td>
<td>DC3 (device control 3)</td>
<td><code>3</code></td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>024</td>
<td>DC4 (device control 4)</td>
<td><code>4</code></td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td>025</td>
<td>NAK (negative acknowledge)</td>
<td><code>5</code></td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>026</td>
<td>SYN (synchronous idle)</td>
<td><code>6</code></td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>027</td>
<td>ETB (end of trans. block)</td>
<td><code>7</code></td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>030</td>
<td>CAN (cancel)</td>
<td><code>8</code></td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>031</td>
<td>EM (end of medium)</td>
<td><code>9</code></td>
</tr>
<tr>
<td>26</td>
<td>20</td>
<td>032</td>
<td>SUB (substitute)</td>
<td><code>;</code></td>
</tr>
<tr>
<td>27</td>
<td>21</td>
<td>033</td>
<td>ESC (escape)</td>
<td><code><</code></td>
</tr>
<tr>
<td>28</td>
<td>22</td>
<td>034</td>
<td>FS (file separator)</td>
<td><code>></code></td>
</tr>
<tr>
<td>29</td>
<td>23</td>
<td>035</td>
<td>GS (group separator)</td>
<td><code>^</code></td>
</tr>
<tr>
<td>30</td>
<td>24</td>
<td>036</td>
<td>RS (record separator)</td>
<td><code>_</code></td>
</tr>
<tr>
<td>31</td>
<td>25</td>
<td>037</td>
<td>US (unit separator)</td>
<td><code>;</code></td>
</tr>
</tbody>
</table>

Source: www.LookupTables.com
Bit-Level Operations in C

- Operations (&:and, |:or, ^:xor, ~:not)
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- Examples (Char data type)
 - ~(not)
 - ~0x41 → 0xBE
 - ~01000001₂ → 10111110₂
 - & (and)
 - 0x69 & 0x55 → 0x41
 - 01101001₂ & 01010101₂ → 01000001₂
 - | (or)
 - 0x69 | 0x55 → 0x7D
 - 01101001₂ | 01010101₂ → 01111101₂
 - ^(xor)
 - 0X03 ^OX05 → 0x06
 - 00000011₂ ^ 00000101₂ → 00000110₂
Contrast: Logic Operations in C

- Logic operations (&&: and, ||: or, !: not)
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Lazy evaluation or early termination
 - Do not evaluate the second argument if the result can be determined from the first argument

- Examples (char data type)
 - ! (Not)
 - !0x41 → 0x00
 - !0x00 → 0x01
 - !!0x41 → 0x01
 - && (and)
 - 0x69 && 0x55 → 0x01
 - || (or)
 - 0x69 || 0x55 → 0x01
 - p && *p (avoids null pointer access)
 - 0 && 5/0 → 0 (avoids division by zero)
Shift Operations

- **Left Shift:** \(x << y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right Shift:** \(x >> y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on right
 - (C under most of machines support arith. Shift)

<table>
<thead>
<tr>
<th>Argument X</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td><< 3</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. >> 2</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. >> 2</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument X</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td><< 3</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. >> 2</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. >> 2</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Encoding Integers

Unsigned

Binary to Unsigned, (B2U)

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

Binary to Two’s comp., (B2T)

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

EX:

short int \(x = 15213; \)
short int \(y = -15213; \)

- **C short 2 bytes long**

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
</tbody>
</table>

- **Sign Bit**

 - For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Encoding Integers, Example

<table>
<thead>
<tr>
<th>χ</th>
<th>unsigned</th>
<th>2’scomp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>–8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>–7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>–6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>–5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>–4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>–3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>–2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>–1</td>
</tr>
</tbody>
</table>
Numeric Ranges

- **Unsigned Values**
 - $U_{Min} = 0$
 - $U_{Max} = 2^w - 1$

- **Two’s Complement Values**
 - $T_{Min} = -2^{w-1}$
 - $T_{Max} = 2^{w-1} - 1$

- **Other Values**
 - Minus 1: $111...1$

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

- **Observations**
 - $|TMin| = Tmax + 1$
 - asymmetric range
 - $UMax = 2 * Tmax + 1$

- **C Programming**
 - `#include <limits.h>`
 - Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
 - Values platform specific
Unsigned & Signed Numeric Values

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- **Can Invert Mappings**
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two’s comp integer

<table>
<thead>
<tr>
<th>X</th>
<th>$B2U(X)$</th>
<th>$B2T(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Mappings between unsigned and two’s complement numbers: keep bit representations and reinterpret
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

Conversion Functions:
- T2U (Signed to Unsigned)
- U2T (Unsigned to Signed)
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Signed vs. Unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix
 - `0U, 4294967259U`

- **Casting**
 - Explicit casting between signed & unsigned same as U2T and T2U
    ```c
    int tx, ty;
    unsigned ux, uy;
    tx = (int) ux;
    uy = (unsigned) ty;
    ```
 - Implicit casting also occurs via assignments and procedure calls
    ```c
    tx = ux;
    uy = ty;
    ```
Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, *signed values implicitly cast to unsigned*
- Including comparison operations `<`, `>`, `==`, `<=`, `>=`
- Examples for $W = 32$: $TMIN = -2,147,483,648$, $TMAX = 2,147,483,647$

<table>
<thead>
<tr>
<th>Constant₁</th>
<th>Constant₂</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td><code>==</code></td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><code><</code></td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td><code>></code></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483647-1</td>
<td><code>></code></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483647-1</td>
<td><code><</code></td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td><code>></code></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><code><</code></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td><code>></code></td>
<td>signed</td>
</tr>
</tbody>
</table>
Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

- Similar to code found in FreeBSD’s implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs
Typical Usage

```c
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}

#define MSIZE 528
void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```
```c
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}

#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    
    ...}
```
Summary
Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w

- Expression containing signed and unsigned int
 - int is cast to unsigned!!
Sign Extension

- **Task:**
 - Given \(w \)-bit signed integer \(x \)
 - Convert it to \(w+k \)-bit integer with same value

- **Rule:**
 - Make \(k \) copies of sign bit:
 - \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0 \)

\(k \) copies of MSB

\[X \]

\[X' \]

\[w \]

\[k \]
Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

```
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>
Negation: Complement & Increment

- Claim: Following Holds for 2’s Complement
 \[\sim x + 1 = -x \]

- Complement
 - Observation: \[\sim x + x = 1111\ldots111 = -1 \]

- Negation
 \[
 \text{Neg}(x) = \begin{cases}
 -2^{w-1}, & x = -2^{w-1} \\
 -x, & x > -2^{w-1}
 \end{cases}
 \]

<table>
<thead>
<tr>
<th>x</th>
<th>[100111101]</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ [\sim x]</td>
<td>[011000010]</td>
</tr>
<tr>
<td>-1</td>
<td>[111111111]</td>
</tr>
</tbody>
</table>

2	\[0010\]
+	\[0010\]
-2	\[1110\]
0	\[0000\]

-8	\[1000\]
+	\[1000\]
-8	\[1000\]
0	\[0000\]
Complement & Increment Examples

x = 15213

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>~x</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>~x+1</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

x = 0

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>~0</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>~0+1</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned Addition

Operands: \(w \) bits

True Sum: \(w+1 \) bits

Discard Carry: \(wth \) bit

- **Standard Addition Function**
 - Ignores carry output

- **Implements Modular Arithmetic**

\[
s = \text{UAdd}_w(u, v) = u + v \mod 2^w
\]

\[
\text{UAdd}_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\]
Visualizing (Mathematical) Integer Addition

- **Integer Addition**
 - 4-bit integers u, v
 - Compute true sum $\text{Add}_4(u, v)$
 - Values increase linearly with u and v
 - Forms planar surface
Visualizing Unsigned Addition

- Wraps Around
 - If true sum ≥ 2^w
 - At most once

True Sum

2^{w+1}

2^w

0

Overflow

Modular Sum

$UAdd_4(u, v)$

$1111 + 0001 = 10000 \mod 2^4 = 0000$
Mathematical Properties

- **Modular Addition Forms an Abelian Group**
 - **Closed** under addition
 \[0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1 \]
 - **Commutative**
 \[\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u) \]
 - **Associative**
 \[\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v) \]
 - **0 is additive identity**
 \[\text{UAdd}_w(u, 0) = u \]
 - **Every element has additive inverse**
 - Let \(\text{UComp}_w(u) = 2^w - u \)
 \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Two’s Complement Addition

Operands: w bits

\[
\begin{array}{c}
\quad u \\
+ \quad v \\
\hline
u + v
\end{array}
\]

True Sum: w+1 bits

\[
\begin{array}{c}
\quad u \\
+ \quad v \\
\hline
u + v
\end{array}
\]

Discard Carry: w bits

\[
\begin{array}{c}
\quad u \\
+ \quad v \\
\hline
\text{TAdd}_w(u, v)
\end{array}
\]

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:
 \[
 \begin{align*}
 \text{int } & s, t, u, v; \\
 s &= (\text{int}) ((\text{unsigned}) u + (\text{unsigned}) v); \\
 t &= u + v
 \end{align*}
 \]
 - Will give \(s == t \)
TAdd Overflow

- **Functionality**
 - True sum requires $w+1$ bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

```
True Sum

0 111...1 2^{w-1}
0 100...0 2^{w-1}
0 000...0 0
1 011...1 -2^{w-1}-1
1 001...1 -2^w
```

```
TAdd Result

011...1
000...0
100...0
```
Visualizing 2’s Complement Addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7

- **Wraps Around**
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

\[TAdd_4(v, u) = \begin{cases}
 1000 & \text{if sum } u + v = 8 \\
 0000 & \text{if sum } u + v = 0 \\
 0111 & \text{if sum } u + v = 9 \\
 \text{otherwise} &
\end{cases} \]
Characterizing TAdd

- **Functionality**
 - True sum requires $w+1$ bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

\[
TAdd_w(u, v) = \begin{cases}
 u + v + 2^w & u + v < TMin_w \
 u + v & TMin_w \leq u + v \leq TMax_w \
 u + v - 2^w & TMax_w < u + v
\end{cases}
\]
Mathematical Properties of TAdd

- Isomorphic Group to unsigneds with UAdd
 - \(TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v))) \)
 - Since both have identical bit patterns

- Two’s Complement Under TAdd Forms a Group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse
 \[
 TComp_w(u) = \begin{cases}
 -u & u \neq TMin_w \\
 TMin_w & u = TMin_w
 \end{cases}
 \]
What’s Next?

- Next Class:
 - Float representation