Chapter 5
Divide and Conquer
Topics

• Divide and conquer
• Divide and conquer algorithm examples
 – Mergesort
 – Counting Inversions
 – Closest pair of points
Divide-and-Conquer

Divide-and-conquer.
- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.
- Break up problem of size n into two equal parts of size \(\frac{1}{2} n \).
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.
- Brute force: \(n^2 \).
- Divide-and-conquer: \(n \log n \).

Divide et impera.
Veni, vidi, vici.
- Julius Caesar
5.1 Mergesort
Sorting

Sorting. Given \(n \) elements, rearrange in ascending order.

Applications.
- Sort a list of names.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS news items in reverse chronological order.

- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.

- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management.
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

obvious applications

problems become easy once items are in sorted order

non-obvious applications
Mergesort

Mergesort.
- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

<table>
<thead>
<tr>
<th>ALG</th>
<th>OR</th>
<th>ITHMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALG</td>
<td>O</td>
<td>ITHMS</td>
</tr>
<tr>
<td>AGLOR</td>
<td>HIMST</td>
<td></td>
</tr>
<tr>
<td>AGHIILMORST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

divide \(O(1)\)

sort \(2T(n/2)\)

merge \(O(n)\)
Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

Using only a constant amount of extra storage.
A Useful Recurrence Relation

Def. \(T(n) = \) number of comparisons to mergesort an input of size \(n \).

Mergesort recurrence.

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
\underbrace{T(\left\lfloor n/2 \right\rfloor)}_{\text{solve left half}} + \underbrace{T(\left\lceil n/2 \right\rceil)}_{\text{solve right half}} + \underbrace{n}_{\text{merging}} & \text{otherwise}
\end{cases}
\]

Solution. \(T(n) = O(n \log_2 n) \).

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume \(n \) is a power of 2 and replace \(\leq \) with \(= \).
Proof by Recursion Tree

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
\frac{2T(n/2)}{\text{sorting both halves}} + \frac{n}{\text{merging}} & \text{otherwise}
\end{cases}
\]
Proof by Telescoping

Claim. If \(T(n) \) satisfies this recurrence, then \(T(n) = n \log_2 n \).

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
\frac{2T(n/2)}{n/2} + \frac{n}{\text{merging}} & \text{otherwise}
\end{cases}
\]

assumes \(n \) is a power of 2

Pf. For \(n > 1 \):

\[
\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1
\]

\[
= \frac{T(n/2)}{n/2} + 1
\]

\[
= \frac{T(n/4)}{n/4} + 1 + 1
\]

\[
\ldots
\]

\[
= \frac{T(n/n)}{n/n} + 1 + \cdots + 1 \quad \underbrace{\log_2 n}_{\text{log}_2 n}
\]

\[= \log_2 n\]
Proof by Induction

Claim. If \(T(n) \) satisfies this recurrence, then \(T(n) = n \log_2 n \).

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
\frac{2T(n/2)}{\text{sorting both halves}} + \frac{n}{\text{merging}} & \text{otherwise}
\end{cases}
\]

\[\text{assumes } n \text{ is a power of 2}\]

Pf. (by induction on \(n \))

 - Base case: \(n = 1 \).
 - Inductive hypothesis: \(T(n) = n \log_2 n \).
 - Goal: show that \(T(2n) = 2n \log_2 (2n) \).

\[
T(2n) = 2T(n) + 2n \\
= 2n \log_2 n + 2n \\
= 2n(\log_2 (2n) - 1) + 2n \\
= 2n \log_2 (2n)
\]
Analysis of Mergesort Recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n \lfloor \lg n \rfloor$.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ \frac{T(\lfloor n/2 \rfloor)}{\text{solve left half}} + \frac{T(\lfloor n/2 \rfloor)}{\text{solve right half}} + \frac{n}{\text{merging}} & \text{otherwise} \end{cases}$$

Pf. (by induction on n)

- **Base case:** $n = 1$.
- **Define** $n_1 = \lfloor n / 2 \rfloor$, $n_2 = \lfloor n / 2 \rfloor$.
- **Induction step:** assume true for $1, 2, \ldots, n-1$.

$$T(n) \leq T(n_1) + T(n_2) + n$$

$$\leq n_1 \lfloor \lg n_1 \rfloor + n_2 \lfloor \lg n_2 \rfloor + n$$

$$\leq n_1 \lfloor \lg n_1 \rfloor + n_2 \lfloor \lg n_2 \rfloor + n$$

$$= n \lfloor \lg n_2 \rfloor + n$$

$$\leq n(\lfloor \lg n \rfloor - 1) + n$$

$$= n \lfloor \lg n \rfloor$$

$$n_2 = \lfloor n/2 \rfloor$$

$$\leq \lfloor 2^{\lfloor \lg n \rfloor / 2} \rfloor$$

$$= 2^{\lfloor \lg n \rfloor / 2}$$

$$\Rightarrow \lg n_2 \leq \lfloor \lg n \rfloor - 1$$
5.3 Counting Inversions
Counting Inversions

Music site tries to match your song preferences with others.
- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
- My rank: 1, 2, ..., n.
- Your rank: $a_1, a_2, ..., a_n$.
- Songs i and j inverted if $i < j$, but $a_i > a_j$.

<table>
<thead>
<tr>
<th>Songs</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>You</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Brute force: check all $\Theta(n^2)$ pairs i and j.
Applications

Applications.
- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- **Divide**: separate list into two pieces.

\[
\begin{array}{cccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]

Divide: $O(1)$.

\[
\begin{array}{cccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7 \\
\end{array}
\]
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- **Divide:** separate list into two pieces.
- **Conquer:** recursively count inversions in each half.

![Image](image_url)

- 5 blue-blue inversions: 5-4, 5-2, 4-2, 8-2, 10-2
- 8 green-green inversions: 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Divide: $O(1)$.

Conquer: $2T(n/2)$.
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
- **Divide:** separate list into two pieces.
- **Conquer:** recursively count inversions in each half.
- **Combine:** count inversions where \(a_i \) and \(a_j \) are in different halves, and return sum of three quantities.

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>4</th>
<th>8</th>
<th>10</th>
<th>2</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>11</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>4</th>
<th>8</th>
<th>10</th>
<th>2</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>11</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
</table>

5 blue-blue inversions
8 green-green inversions

9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Divide: \(O(1) \).

Conquer: \(2T(n / 2) \)

Combine: ???

Total \(= 5 + 8 + 9 = 22 \).
Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where \(a_i\) and \(a_j\) are in different halves.
- **Merge** two sorted halves into sorted whole.

13 blue-green inversions: \(6 + 3 + 2 + 2 + 0 + 0\)

Count: \(O(n)\)

Merge: \(O(n)\)

\[T(n) \leq T\left(\left\lfloor n/2 \right\rfloor\right) + T\left(\left\lfloor n/2 \right\rfloor\right) + O(n) \quad \Rightarrow \quad T(n) = O(n \log n) \]
Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
 if list L has one element
 return 0 and the list L

 Divide the list into two halves A and B
 \((r_A, A) \leftarrow \text{Sort-and-Count}(A) \)
 \((r_B, B) \leftarrow \text{Sort-and-Count}(B) \)
 \((r, L) \leftarrow \text{Merge-and-Count}(A, B) \)

 return \(r = r_A + r_B + r \) and the sorted list L
}
5.4 Closest Pair of Points
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.
 \[\text{fast closest pair inspired fast algorithms for these problems} \]

Brute force. Check all pairs of points \(p \) and \(q \) with \(\Theta(n^2) \) comparisons.

1-D version. \(O(n \log n) \) easy if points are on a line.

Assumption. No two points have same \(x \) coordinate.
 \[\text{to make presentation cleaner} \]
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure $n/4$ points in each piece.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
- **Combine:** find closest pair with one point in each side. \leftarrow seems like $\Theta(n^2)$
- Return best of 3 solutions.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $\leq \delta$.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.
- Observation: only need to consider points within δ of line L.

\[\delta = \min(12, 21) \]
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $\leq \delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

$$\delta = \min(12, 21)$$
Closest Pair of Points

Find closest pair with one point in each side, **assuming that distance < \(\delta \).**

- Observation: only need to consider points within \(\delta \) of line \(L \).
- Sort points in \(2\delta \)-strip by their \(y \) coordinate.
- Only check distances of those within 11 positions in sorted list!

\[
\delta = \min(12, 21)
\]
Def. Let s_i be the point in the 2δ-strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \geq 12$, then the distance between s_i and s_j is at least δ.

Pf.
- No two points lie in same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$.

Fact. Still true if we replace 12 with 7.
Closest-Pair(p_1, ..., p_n) {
 Compute separation line L such that half the points are on one side and half on the other side.

 \[\delta_1 = \text{Closest-Pair(left half)} \]
 \[\delta_2 = \text{Closest-Pair(right half)} \]
 \[\delta = \min(\delta_1, \delta_2) \]

 Delete all points further than \(\delta \) from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than \(\delta \), update \(\delta \).

 return \(\delta \).
}
Closest Pair of Points: Analysis

Running time.

\[T(n) \leq 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n) \]

Q. Can we achieve \(O(n \log n) \)?

A. Yes. Don't sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
 - Sort by merging two pre-sorted lists.

\[T(n) \leq 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]