Body-Coupled Communication for Body Sensor Networks

Adam T. Barth, Mark A. Hanson, Harry C. Powell Jr., Dincer Unluer, Stephen G. Wilson, John Lach

Department of Electrical and Computer Engineering University of Virginia
Outline

- Background
 - UVA team
 - What is BodyComm?
 - What are the types of BodyComm?
- BodyComm frequency characteristic testing
- Comparison to 2.4 GHz technology
- Future research and systems
- Conclusion
INERTIA Group at UVA

- **Background**
 - Aging
 - Movement disorders (Parkinson’s Disease, gait disorder, and fall risk behavior) affect mobility and quality of life
 - Collaboration
 - Physicians from UVA Med School and surrounding areas
 - Use feedback to inform engineering decisions
 - Systems
 - Wearable motion acquisition system (TEMPO) already in medical research projects collecting data
Electrical Characteristics

Background
- Nordic nRF24AP1
- Chipcon CC2420
- Chipcon CC1101

Frequency Band
- Nordic nRF24AP1: 2.4 GHz
- Chipcon CC2420: 2.4 GHz
- Chipcon CC1101: 900 MHz

Voltage Supply
- Nordic nRF24AP1: 1.9-3.6 V
- Chipcon CC2420: 2.1-3.6 V
- Chipcon CC1101: 1.8-3.6 V

Current Consumption
- **TX**
 - Nordic nRF24AP1: 13-16 mA
 - Chipcon CC2420: 8.5-17.4 mA
 - Chipcon CC1101: 12.3-15 mA
- **RX**
 - Nordic nRF24AP1: 22 mA
 - Chipcon CC2420: 18.8 mA
 - Chipcon CC1101: 14.3-16.5 mA

Maximum Data Rate
- Nordic nRF24AP1: 1 Mbps*
- Chipcon CC2420: 250 kbps
- Chipcon CC1101: 1.2-500 kbps

*over air maximum raw data rate

Testing

<table>
<thead>
<tr>
<th></th>
<th>Atmel ATmega128L</th>
<th>MSP430F1611</th>
<th>ARM 920t (Atmel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Supply</td>
<td>2.7-5.5 V</td>
<td>1.8-3.6 V</td>
<td>3-3.6 V</td>
</tr>
<tr>
<td>Clock Frequency (max)</td>
<td>8 MHz</td>
<td>8 MHz</td>
<td>209 MHz</td>
</tr>
<tr>
<td>Active Mode Current</td>
<td>5.5 mA</td>
<td>450 µA</td>
<td>24.4 mA</td>
</tr>
<tr>
<td>Sleep Mode Current</td>
<td>5-25 µA</td>
<td>0.2-2 µA</td>
<td>520 µA</td>
</tr>
<tr>
<td>RAM</td>
<td>4 KB</td>
<td>10 KB</td>
<td>16 KB</td>
</tr>
</tbody>
</table>

Comparison

Future

Conclusion
Types of Wireless Communication

- Optical/Infrared
 - Requires line of sight
 - Normally not omni-directional

- RF
 - Omni-directional (good/bad?)
 - Received power reduces by $1/r^2$

- Magnetic Induction
 - Normally not omni-directional
 - Received power reduces by $1/r^3$

- Body-Coupled
 - Uses the human body as a transmission medium
 - Health considerations?
 - Limits communication to items in contact with the body
 - Normally operates at low frequencies
Types of BodyComm

- Which is best for BANs?
 - External dependence
 - System complexity
 - Wearability

- How do they compare to RF communication?

1. Circuit

2. Electrostatic

3. EM Waves
Waveguide BodyComm

- Uses the body as a waveguide for EM waves
- Little to no dependence on external environment
- Uses two contacts at each site
- Keisuke Hachisuka (University of Tokyo)
 - Re-validate frequency characteristics for consistency
 - Use carbon conductor electrodes for long-term wearability
 - Compare to current 2.4 GHz (ZigBee) technologies
 - Analyze “what we gain” from BodyComm in BSNs
Frequency Tests

- 5 test subjects
 - 3 males (ages 23, 24, and 54) and 2 females (ages 20 and 23)
- Two carbon conductor electrodes on each wrist
 - One set connected to RF function generator (-12dBm TX power)
 - One set connected to spectrum analyzer
- Frequencies swept from 1-50 MHz
Frequency Results

Comparison

Future

Background

Testing

Conclusion

Hachisuka (Sensors and Actuators, February 2003)
Frequency Results

• What do these results show?
 – Relative consistency across subjects
 – Common resonant frequencies
 – Excellent receive strengths!!
 • Even without matching impedance to body
 • With wireless transmission being the “power hog” in current BSNs, this could extend battery life or reduce form factor dramatically
Comparison to 2.4 GHz

- 13.56 and 23 MHz carriers were selected for comparison
- Conducted tests with various positions on the body of subject 1

13 to 34 dB improvement over 2.4 GHz (between 20X and 2500X better)
Comparison to 2.4 GHz

What do we gain with BodyComm?
ZigBee specs: 1% PER, 1000bits/packet, and 250kbps throughput at -92 dBm RX power
 - Shown in previous tests to be achieved at around -24 dBm TX power

FSK Equations:

\[P_p = 1 - \left(1 - P_e \right)^N \]
\[P_e = \frac{1}{2} e^{\frac{E_b}{2 \cdot N_0}} = \frac{1}{2} e^{\frac{P_r}{2 \cdot N_0 \cdot Rb}} \]

With reasonable assumptions for \(N_0 \) and \(T_{sys} \), we could transmit at around -52 dBm and see the same results
Future Research Opportunities

• Further theory and modeling
 – Model the human body for low frequency analysis (HFSS?)
 • Is the body really acting as a waveguide at such low frequencies?

• Further Testing
 – Decouple common ground plane
 – Electrodes
 • Feasibility
 • Explore frequency characteristics
 – Use an anechoic chamber to measure radiated energy
Future Research Opportunities

- Build body-worn prototypes
 - Availability of small, low-power transceivers at the frequencies tested
 - Can it be done with COTS components?
 - Can the electrodes be capacitively coupled to the skin?
• What are the implication of a “body-contained” network
 – Malicious attacks are limited to very close proximity
 – Facilitates spatial reuse
 – Reduces interference in dense environments
Conclusions

• Contributions
 – Frequency analysis using wearable electrodes
 – Comparison to 2.4 GHz with equal data-rates

• Implications
 – If wireless transmission consumes over half the power budget for a body node, than a 2000X improvement in TX power could lead to orders of magnitude improvement in battery life
 – Creates opportunities for higher spatial/channel reuse and better awareness of security and privacy issues
 – Could enable long-term medical observation studies previously not possible
Body-Coupled Communication for Body Sensor Networks

Adam T. Barth, Mark A. Hanson, Harry C. Powell Jr., Dincer Unluer, Stephen G. Wilson, John Lach

Department of Electrical and Computer Engineering University of Virginia
Website

http://www.ece.virginia.edu/inertia