Service Discovery and Composition in Body Area Networks

Matteo Coloberti, Clemens Lombriser, Daniel Roggen, Gerhard Tröster, Renata Guarneri, Daniele Riboni
Motivation

- Activity recognition in Body Area Networks from sensors worn on the body and on tools used
- Adaptation to environment without reprogramming
- Algorithm updates from outside

Service discovery and composition enables this
Simple and complex services

- Miniature WSN nodes provide service pools
 - **Simple services** like sensors or data processing functions
 - Preprogrammed, sharing RAM resources

- Applications are formed by interconnecting those simple services to **complex services**
 - Allows distributed execution of activity recognition algorithms
Simple service discovery

- The WSN is clustered according to connectivity time
 - Stable processing base
 - Clusterhead keeps service directory for the *service cluster*
- Service directories interconnect to form a service backbone
 - Allows instantiating services not available inside the own cluster
- Extended over a gateway to the Task Graph Database (TGD)
Complex Service Discovery

The Task Graph Database

- A database for complex services
 - For various applications
 - For different requirements (QoS, environment)

- Advertises possible complex services
 - Receives updates on available WSN functionality
 - Keeps track of different possible services
 - Easy addition of new complex services
Communication

- Service clusters sends service *registration* and *deregistration* messages to the TGD
 - Only updates on changes in the availability

- The TGD sends *advertisement* and *removal* messages to the service clusters
 - Service cluster can choose to download the description of the complex services
Complex Service Agent

- Every complex service availability is handled by an agent.
- It keeps an Finite State Machine for every service needed.
- Updates the state on reception of messages from the WSN.
- Publishes service when all services are available.

PUBLISH

EVENT
TGD Architecture

- Multi-agent structure following a congregation model
- Each agent as producer-consumer
 - Consumes other service publish announcements
 - Produces own service publish announcements
- Publication messages produced by agents may be consumed by other agents
 - Complex services containing other complex services are possible
Evaluation

- Simulation
 - Reference Point Group Mobility Model (RPGM)
 - 100 runs with 50 nodes in 10 clusters
 - 3 – 20 simple services per node
 - 40 complex services to be detected

- Results
 - 92% of the complex services found within first 60 simulation seconds
 - Limited by the clustering algorithm
 - Fast execution
Conclusion

- Activity recognition in Body Area Networks
- Two layered architecture for service discovery and composition
 - Clustering for adaptation to dynamics of BAN
 - Light-weight architecture (no semantics)
 - Efficiently detects complex services to download
Further work

- A language for complex services
 - Describing different options of implementation, i.e. QoS, resources needed, or similar

- Modeling the sensor network
 - Important parameters for service distribution
 - Resources for the execution of complex services
Thank you
Evaluation

- **Simulation based on Reference Point Group Mobility (RPGM)**
 - Group movement with random target within the simulation area, random movement within the group perimeter of each group member
 - 50 nodes in groups with average of 5 nodes, 100 simulations

- **Service distribution**
 - Complex service composed of 3 to 20 services
 - Random simple service distribution
Results

- Delay of the service discovery protocol to discover first nodes
- Delay until first other groups are met – confusion between some of the nodes, but generally very stable
Results

- About 25 simple services per cluster
- Each service available 3.2 times in the whole network
- After 60 seconds, 92% ($\sigma=1.5$) of all complex services discovered