Distributed Pervasive Services using Group Service communication supporting Body Area Networks

Christopher Foley, Sasitharan Balasubramaniam, Dmitri Botvich, William Donnelly (TSSG) Stefan Michaelis, Jens Schmutzler (University of Dortmund) Thomas Stair (Brigham and Womens Hospital)
Introduction

BANs produce critical data

This paper looks to how this data can be harnessed

Applied through a middleware (developed in the MORE project)

SOA based middleware

With a focus on service grouping and the management of these groups

With the aid of policy based approach

Objective: create services and service groups to support various types of BANs
(Upkar Varshney) - discusses the vision of pervasive healthcare through wireless technology and the associating research challenges

(E. Lupu et al) AMUSE project: looked at the adaptation of policies to implementing pervasive healthcare

(Feng Wang et al) - Services and Policies for Care at Home

(Tao Gu et al) - A service-orientated middleware for building context-aware services

Web Services Policy 1.5 Framework W3C Recommendation 04 – provides functional assurances of services
Detailed Architecture

MORE Proxy

Core Management Service (CMS)

MORE Middleware

Application

Application Layer

Internal

Service Connectors

MORE Embedded Node

Application Layer

Proprietary

Sensors

Sensor A

µSOA

Inter-Node/Inter-Service Communication

Operating System

Hardware Layer

Implementation of Service Functionality (Service logic)
MORE IST Project

2 End User Scenarios – Remote health management, mitigation management in the Environmental domain

Validation of experimental system by real end users

Fusion of sensors and Web Services
Group Types & Group Utility Services

Group Types
- Role Group
- Service Group
- Communication Group

Group Utility Services
- Group Management Service
- Group Communication Service
MORE – Policy controlled Groups

Based on PBNM approach to management of network entities

Group initialization and management controlled by policies

Policy Components
- Events
- Conditions
- Actions
- PolicyRule -> {Events, Conditions, Actions}

Configuration Policy
Behaviour Policy
Group Mgt Service

Disease
Diabetes
Cardiac
Type I
Type II
Case Study – Acute Health Care

Group Establishment

Emergency Detection and resulting Group Reconfiguration

Patient Monitoring Group

Patient

Diabetic Service

Nurse’s PDA

Physician Service

Doctor’s PDA

Hospital Management Service
Case Study – Group Establishment

PolicyRule:
{
 CommonName "PatientMonitoringGroupSetup",
 Events
 createGroup,
 Conditions
 MandatoryMember1 – Is member of DoctorsOnSite && Is Diabetologist && Is NotInSurgery
 MandatoryMember2 – Is member of NursesOnSite && not high Patient Allocation
 MandatoryMember3 - HospitalMgtService
 Actions
 initializeGroup
}
Case Study – Group Establishment

Nurse A
DeviceID = 10
CardiacMgt
Service
DiabeticMgt
Service

Doctor X
DeviceID = 12
Physician Service

BloggsJoe

Hospital Server

Patient Monitoring
Group

Nurse B
DeviceID = 11
CardiacMgt
Service

SmithJohn

Patient Monitoring
Group

Hospital Mgt
Service

StaffMgt
Service

Location
Service
PolicyRule:
{
 PolicyEvent:
 {CommonName "ECGMeasurement", ParameterList "PatientIdentifier", "ECG-Value"}
 PolicyCondition:
 {CommonName "ECGHighPriority", If ECG-Value is InDangerousRange}
 PolicyCondition:
 {CommonName "hasMemberDoctor", If Member == Doctor}
 PolicyCondition:
 {CommonName "memberTypeNurse", If Member == Nurse}
 PolicyAction:
 {CommonName "sendHighPriorityAlarm", TriggerMsg "SendNotifToGroup" Params "HIGH", "ECG values at dangerous levels"}
 PolicyAction:
 {CommonName "addMemberToGroup", TriggerMsg "addMemberToGroup" Params "{MemberType, Doctor}" & {BaseSelectionOn, {DoctorType, Cardiac} & {Load, !Busy} & {Location, Closest}}
}
PolicyRule:
{
 CommonName "RULE-ECG-MEAS-ECGHIGH",

 Events
 ECGMeasurementEvent

 Conditions
 ECGHighPriority && memberTypeNurse &&
 !(hasMemberDoctor)

 Actions
 sendHighPriorityAlarm && addMemberToGroup
}

Case Study – Reconfigured Group

BloggsJoe
DeviceID = 10
CardiacMgt Service
DiabeticMgt Service

Nurse A
Doctor X
DeviceID = 12
Physician Service

SmithJohn
CardiacMgt Service

Nurse B
DeviceID = 11
Patient Monitoring Group

Hospital Server
Patient Monitoring Group
Hospital Mgt Service
StaffMgt Service
Location Service
Conclusion / Future Work

- Policy controlled service groups which add value to the data produced by the BANs.

- Adaptable and reconfiguration of the groups which can aid efficiency with a pervasive healthcare environment.

- Objective: support efficient monitoring and usage of BANs,
 - e.g. home care monitoring
 - e.g. emergency disaster situation

Future Work

- Investigating a lightweight inference engine for policy processing
Questions ??

ccfoley @ tssg.org

http://www.ist-more.org